
Problems on Resurgence
Ramon Miravitllas

I Self-energy in the O(N) non-linear sigma model

The O(N) non-linear sigma model is a quantum field theory in Euclidean 2-dimensional space
with N particles ~σ = (σ1, . . . , σN ). The Lagrangian is given by

L(~σ,X) =
1

2g2

{
∂µ~σ · ∂µ~σ +X(~σ2 − 1)

}
,

where g is the coupling of the theory and X is an auxiliary field that imposes the constraint

~σ2 = 1.

The self-energy of the O(N) non-linear sigma model can be computed at large N in the ’t Hooft
coupling λ = Ng2/(2π). The result can be expanded in powers of 1/N :

Σ(p2) = Σ0(p
2) +

1

N
Σ1(p

2) +O
(

1

N2

)
.

In particular, the subleading correction Σ1(p
2) can be obtained from diagrams of the type

σi σj

p
δijp

2Σ1(p
2)

p

,

where the solid line represents the propagators of the σi, and the dashed line, the propagator
of X. However, there is an alternative computation which exploits that the Lagrangian (??)
is quadratic in the fields σi, so they can be integrated out in the path integral. This process
yields an exact result, which goes beyond perturbation theory, and is given by

Σ1(p
2) =

1

x

∫ ∞

0

dy log−1

(
ξ + 1

ξ − 1

)[
yξ√

(1 + y + x)2 − 4xy
− 1 +

x+ 1

2

(
1

ξ
− 1

)]
,

where x = p2/m2, m2 = µ2e−2/λ(µ) is the non-perturbatively generated mass of the σ particles,
µ is the renormalization scale, and

ξ =

√
1 +

4

y
.

According to a paper by M. Beneke, V. M. Braun and N. Kivel from 1998, the self-energy (??)
can be written as the following trans-series:

Σ1(p
2) = log(λ/2) + 1− γE +

∫ ∞eiθ

0

e−y/λB0(y)dy

+ e−2/λ

(
log(λ/2) + 1− γE ± iπ −

∫ ∞eiθ

0

e−y/λB1(y)dy
)
+O

(
e−4/λ

)
,
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where λ is the coupling at µ2 = p2 and the two Borel transforms are given by

B0(y) =
2

y − 2
− 1

2
ψ(1 + y/2)− 1

2
ψ(1− y/2)− γE ,

B1(y) =
1

2
− y

2
+
y2

4
+

1

2

(
1− y2

4

)[
ψ(1 + y/2) + ψ(2− y/2) + 2γE

]
.

γE is the Euler’s constant and ψ(x) = d logΓ(x)/dx is the digamma function. The ambiguous
imaginary signs in the exponential correction are chosen according to the standard convention:
the upper sign has to be paired with a direction θ > 0 in the integration, while the lower sign
has to be paired with a direction θ < 0.

1.

(a) Recover the full perturbative expansion of the self-energy, and obtain

Σ1(p
2) ∼ log(λ/2) + 1− γE − 2

∑
k≥0

k! (λ/2)
k+1

+ 2
∑
k≥1

(2k)! ζ(2k + 1)(λ/2)
2k+1

,

where ζ(z) is the Riemann zeta function. Remember that the Taylor expansion of the
digamma function around 1 + z = 0 is given by

ψ(1 + z) = −γE −
∑
k≥1

ζ(k + 1)(−z)k.

Is the expansion (??) convergent for small enough λ?
(b) Consider the coefficients ck of the asymptotic expansion of (??), defined as∑

k≥0

ckλ
k+1.

Check that for large and odd k, the coefficients behave as

ck ∼ C k! (1/A)k,

where C and A are real constants. What is the value of A?
(c) The integral in (??) can be numerically computed for specific values of x. In particular,

for x = 1000, we obtain
Σ1(m

2x) ≈ −1.848040909962.

Approximate the self-energy by truncating the asymptotic expansion of (??). Remember
that x = e2/λ. Consider truncation to order λk0+1 with k0 odd integers in the interval
1 ≤ k0 ≤ 21. Plot the approximations as a function of k0. Are they a good approximation
to the numerical result of (??)? What is the value of k0 that yields the best approximation?
Compare the optimal k0 with the theoretical expectation

k0 ≈ A

λ
.
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2.

(a) Check that the imaginary ambiguity arising from the Borel sum of the perturbative part
cancels with the imaginary ambiguity in the exponential corrections, up to order e−2/λ

(included). Do it both numerically and analytically.
(b) What should be the imaginary ambiguity in the e−4/λ correction, so that it cancels the

imaginary ambiguity arising from both the Borel sum of the perturbative part, and the
borel sum of the e−2/λ exponential correction?

(c) Numerically compute the Borel sum of the perturbative part at x = 1000. Repeat the
analysis of exercise 1, but for the quantity

Σ1(p
2)−

[
log(λ/2) + 1− γE + Re

∫ ∞eiθ

0

e−y/λB0(y)dy

]
.

II Ground state energy density in the O(N) sigma model
with a quartic potential

The O(N) sigma model with a quartic potential is a quantum field theory of N scalar particles
~Φ = (Φ1, . . .ΦN ). The Lagrangian is given by

L(~Φ) = 1

2
∂µ~Φ · ∂µ~Φ− µ2

2
~Φ2 − g

4!
~Φ4.

At large N , the ground state energy density of this model can be computed in perturbation
theory from diagrams of the type (called “ring diagrams”)

where the solid lines denote the propagators of the Φi particles.

According to a paper by M. Mariño and T. Reis from 2020, the ground state energy density E
of this model, at large N and at the perturbative level, is given by

E(γ)

m2
= − N

32πγ
+

1

8π
− π

48
γ − I(γ)

8π
+O

(
e−

1
γ
)
+O(N−1),

where γ = Ng/(12πm2) is a dimensionless ’t Hooft coupling, m2 = −2µ2, and

I(γ) =

∫ ∞

0

{
log

[
1 + γ

log(x)
x+ 1

]
− γ

log(x)
x+ 1

}
dx
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3.

(a) Take the N0 contribution from the above result and expand it in powers of the coupling
γ. You should obtain

1

8π
− π

48
γ − 1

8π

∑
n≥2

cnγ
n, cn =

(−1)n+1

n

∫ ∞

0

[
log(x)
x+ 1

]n
dx.

(b) Numerically compute the coefficients cn for 2 ≤ n ≤ 50. Check that cn/(n− 1)! → −1 as
n becomes large. What is the large order behavior of the coefficients?

4. In this exercise, we will analytically derive the large order behavior that we computed above.
First, notice that the integral I(γ) has an imaginary part, which arises from the region of
integration where 1 + γ log(x)/(x+ 1) < 0. In particular, this region is given by 0 < x < x(γ),
where

1 + γ
log(x(γ))
x(γ) + 1

= 0.

(a) For y > 0, an imaginary part arises from the logarithm: log(−y± i0) = log(y)± iπ. Check
that the total imaginary part in I(γ ± i0) is given by

∓iπx(γ).

Assume 0 < x(γ) < 1, so log(x(γ)) < 0.
(b) We note that (??) is a transcendental equation for x(γ) and it cannot be solved by algebraic

methods. The Lambert’s function W (z) is defined as

W (z)eW (z) = z,

providing a solution w to the transcendental equation wew = z. Prove that (??) can be
written as

x(γ)

γ
ex(γ)/γ =

e−1/γ

γ
.

Then verify that

x(γ) = γW

(
e−1/γ

γ

)
.

(c) The power expansion of the Lambert’s function around z = 0 is given by

W (z) =
∑
n≥1

(−n)n−1

n!
zn.

Write the imaginary ambiguity of I(γ ± i0) as a sum of exponentially small terms in the
coupling γ, and obtain, to the very first terms

∓iπ
(
e−1/γ − e−2/γγ−1 +O

(
e−3/γ

))
.

(d) Assume that

I(γ ± i0) =
1

γ

∫ ∞eiθ±

0

e−s/γB(s)ds,

where B(s) =
∑

n≥2 cns
n/n! is the Borel transform of the asymptotic expansion of I(γ),

and θ+ (θ−) is a small positive (negative) angle. From the ambiguity in (??), compute the
large order behavior of the coefficients cn up to two asymptotic terms.
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III Self-energy in massless QED

In QED, the photon propagator is given by

iDµν(q) =
i

q2

[
−gµν +

qµqν
q2

]
,

the propagator for massless leptons is

iSij(p) = iδij
/p

p2
,

and the interaction vertex is ie0γµδij , where e0 denotes the bare QED coupling.

In this list of exercices, we will compute the self-energy of the leptons for massless QED in the
limit of large number of leptons N , but at all orders in perturbation theory. To this end, we
define the ’t Hooft coupling

λ0 =
Ne20
12π2

.

We recall that the fermion polarization function is given by

iλ0Πµν(q) = ie0γµ ie0γν = iλ0(qµqν − q2gµν)Π(q2),

with (d = 4 + 2ε and (+,−, · · · ,−) Minkowski metric)

Π(q2) =
12π2i

q2(1− d)

∫
ddp

(2π)d
Tr[γµ(/p+ /q)γµ/p]

p2(p+ q)2
=

(
− p2

4π

)ε
Γ(1− ε)Γ(1 + ε)Γ(2 + ε)

ε(1 + 2ε/3)Γ(2ε+ 2)
.

5.

(a) Construct a chain of n lepton loops joined together by n+ 1 photon propagators

n loops
· · ·

q q

[iDµ1µ2(q)][iλ0Π
µ2µ3(q)][iDµ3µ4(q)] · · · [iDµn+1µn+2(q)].

Check that (
−gµν +

qµqν
q2

)(
−gνρ + qνqρ

q2

)
= −

(
−gρµ +

qµq
ρ

q2

)
.

Conclude from this result that the chain of lepton loops can be expressed as

− i

q2

(
−gµν +

qµqν
q2

)
Π(q2)nλn0 .
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(b) Add an extra factor λ0 to the above result, to account for the vertices at each end of the
chain, and sum the chains to obtain (up to factors in front of the sum)

λ0
∑
n≥0

Π(q2)nλn0 =
λ0

1− λ0Π(q2)
.

(c) We consider the renormalized coupling λ = (ν2)εZλλ0, where Zλ is the renormalization
coupling constant and ν2 = µ2eγE−log(4π) accounts for both the renormalization scale µ
and the modified minimal subtraction scheme. Obtain

Z−1
λ =

1

1 + λ/ε
+O(1/N).

by renormalizing the chain of lepton loops.

6. Draw a big loop formed with a chain of n lepton loops and one lepton propagator, and obtain
the (n+ 1)-th perturbative correction to the bare self-energy:

p, i p, j

n loops

δij
N

12π2iλn+1
0

∫
ddq

(2π)d
−i
q2

(
−gµν +

qµqν
q2

)
Π(q2)nγµ

i(/p+ /q)

(p+ q)2
γν .

(Do not forget to add the two extra QED vertices and multiply by −i so that the self-energy
is real).

(a) Using gamma matrix identities in d dimensions and 2p · q = (p+ q)2 − p2 − q2, write the
product of gamma matrices inside the loop as:

1

q2

(
−gµν +

qµqν
q2

)
γµ

/p+ /q

(p+ q)2
γν =

(d− 2)(/p+ /q)− /p

q2(p+ q)2
−

p2/q

q4(p+ q)2
+

/q

q4
.

(Notice that the last term will vanish in the loop integral, due to the symmetry qµ 7→ −qµ).
(b) Prove that the bare self-energy can be written as

Σij(p) = /p
δij
N

∑
n≥1

Σ(n)(p2)λn0

with

Σ(n)(p2) = 12π2i

(
− 1

4π

)(n−1)ε[
Γ(1− ε)Γ(1 + ε)Γ(2 + ε)

ε(1 + 2ε/3)Γ(2ε+ 2)

]n−1

×
[
(1 + 2ε)I(1− (n− 1)ε, 1) + (2 + 2ε)J(1− (n− 1)ε, 1)− p2J(2− (n− 1)ε, 1)

]
.

The loop integrals I and J are defined as

I(r, s) =

∫
ddq

(2π)d
1

(q2)r[(p+ q)2]s
, pµJ(r, s) =

∫
ddq

(2π)d
qµ

(q2)r[(p+ q)2]s
.
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7. Consider a bare Green’s function expanded in powers of the bare coupling:

G0(ε) =
∑
n≥1

G
(n)
0 (ε)λ0(ε)

n.

We define the “structure function” F (x, y) of the Green’s function through

(ν2)−nεG
(n)
0 (ε) =

1

nεn
F (ε, nε),

We also define the expansion of F in the second variable as

F (x, y) =
∑
j≥0

Fj(x)y
j .

(a) Using the renormalization constant of (??), prove that the Green’s function can be ex-
panded in terms of the renormalized coupling as

G0(ε) = −F0(ε)
∑
n≥1

1

n

(
−λ
ε

)n

+
∑
n≥1

(n− 1)!Fn(ε)λ
n +O(ε).

Indication: Use the Taylor expansion(
x

1 + x

)n

=
∑
m≥n

(
−n

m− n

)
xm,

with x = λ0/ε, then commute the sum over n with the sum over m. Finally, use the
binomial identity

m∑
n=1

(
−n

m− n

)
nj−1 =


(−1)m+1/m if j = 0,

0 if 1 ≤ j ≤ m− 1,

(m− 1)! if j = m.

(b) After the introduction the renormalization field constant for the leptons, we can renor-
malize the Green’s function by simply removing the first sum of (??) and then taking the
limit ε → 0. Prove that the renormalized Green’s function can be written as the Borel
sum

G(λ) =

∫ ∞

0

e−t/λB(y)dy,

where B is the Borel transform

B(y) =
F (0, y)− F (0, 0)

y
.

Assume that the functions Fn(x) are convergent at x = 0.

8.

(a) With the help of an algebraic program, if necessary, compute the structure function of the
lepton self-energy, using the results of (??) and (??). Use the following expressions for the
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loop integrals I and J (they can be found, for example, in the book “QCD: Renormalization
for the Practitioner,” by P. Pascual and R. Tarrach, appendix C):

I(r, s) =
i

(4π)2

(
− p2

4π

)ε
1

(p2)r+s−2

Γ(2− r + ε)Γ(2− s+ ε)Γ(r + s− 2− ε)

Γ(r)Γ(s)Γ(4− r − s+ 2ε)
,

J(r, s) = − i

(4π)2

(
− p2

4π

)ε
1

(p2)r+s−2

Γ(3− r + ε)Γ(2− s+ ε)Γ(r + s− 2− ε)

Γ(r)Γ(s)Γ(5− r − s+ 2ε)
.

Write the structure function in terms of the variables x = ε and y = nε (when n appears
alone, use n = y/x).

(b) Compute the Borel transform of the renormalized self-energy, and obtain

B(y) =
9

4

(
− p2

µ2

)y
e−5y/3

(y + 2)(y + 1)(y − 1)
.

Draw a qualitative plot with the position of the singularities.
(c) Consider the scale choice µ2 = −p2 > 0. We define the perturbative coefficients cn as

Σ(λ) =
∑
n≥1

cnλ
n.

From the Borel transform you computed above, determine the large order behavior of the
coefficients cn, arising from the closest singularity (or singularities) to the origin.
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