
LES HOUCHES LECTURE NOTES ON MODULI SPACES OF RIEMANN SURFACES

ALESSANDRO GIACCHETTO AND DANILO LEWAŃSKI

Abstract. In these lecture notes, we provide an introduction to the moduli space of Riemann
surfaces, a fundamental concept in the theories of 2D quantum gravity, topological string theory,
and matrix models. We begin by reviewing some basic results concerning the recursive boundary
structure of the moduli space and the associated cohomology theory. We then present Witten’s
celebrated conjecture and its generalisation, framing it as a recursive computation of cohomological
field theory correlators via topological recursion. We conclude with a discussion of JT gravity in
relation to hyperbolic geometry and topological strings. These lecture notes accompanied a series of
lectures at the Les Houches school “Quantum Geometry (Mathematical Methods for Gravity, Gauge
Theories and Non-Perturbative Physics)” in Summer 2024.
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1. Introduction

As a physical theory, 2D gravity is a rather trivial theory, as the Einstein–Hilbert action

S =
1

2κ

∫
Σ

d2x R
√
−h (1.1)

is a topological invariant of the surface Σ. Consequently, the Einstein equations are automatically
satisfied. In contrast, 2D quantum gravity is a rather rich theory, with deep connections to the
theory of integrable systems and algebraic geometry. In the quantum setting, what is physically
realized is not a fixed metric h on the surface Σ, but rather a fluctuating metric. The quantity of
interest, the path integral, is then an integral over the space of all such metrics up to symmetry:{

(Σ, h)
∣∣∣ surface Σ

with metric h

}/
diffeomorphism
conformal transf. (1.2)

In mathematical terms, we are interested in the space parametrizing Riemann surfaces, and more
precisely in the calculation of integrals over such moduli space.

A completely different approach to 2D quantum gravity builds upon the idea of discretising the
surfaces and counting triangulations, which in turn is related to random matrix theory. The
“random matrix method” started with G. ’t Hooft’s discovery in 1974 [Hoo74] from the study
of strong nuclear interactions, that matrix integrals are naturally related to graphs drawn on
surfaces, weighted by their topology. This first example by ’t Hooft was then turned into a
general paradigm for enumerating maps, by physicists E. Brezin, C. Itzykson, G. Parisi, and
J.-B. Zuber [BIPZ78]. By their method, they recovered some results due to the mathematician
W. T. Tutte in the ’60s, about counting the numbers of triangulations of the sphere [Tut68].

In the continuum limit, one would expect the two approaches to coincide. The idea that these
two models of 2D quantum gravity are equivalent has striking consequences and motivated
E. Witten to formulate his famous conjecture about the geometry of moduli spaces of Riemann
surfaces [Wit91]. The conjecture, later proved by M. Kontsevich [Kon92], connects in a beautiful
way theoretical physics, algebraic geometry, and mathematical physics. Recently, the physics
literature has seen a resurgence of such ideas in connection to Jackiw–Teitelboim gravity and
its holographic dual, the Sachdev–Ye–Kitaev model [Kit; SSS] (cf. C. Johnson’s and G. Turiaci’s
lecture notes [Joh; Tur]).

sp
ac

e

time

Another physical theory presenting deep connections
with the theory of Riemann surfaces is string theory. As a
string travels through spacetime, it traces out a Riemann
surface, the worldsheet of the string. These are nothing
but stringy versions of Feynman diagrams. The path in-
tegrals of the theory are mathematically described as in-
tegrals over the moduli spaces of Riemann surfaces map-
ping to the spacetime (cf. M. Liu’s lecture notes [Liu]).



MODULI SPACES OF RIEMANN SURFACES 3

The properties satisfied by such integrals are mathematically described by the notion of cohomo-
logical field theory.

The goal of these notes is to describe the mathematics related to such ideas, focusing particularly
on the moduli space of Riemann surfaces, the concept of cohomological field theory, and its
recursive solution. The main references include:

[Zvo12] D. Zvonkine, “An introduction to moduli spaces of curves and their intersection theory”
Not-too technical notes on the moduli space of curves, its intersection theory, and Witten’s conjecture

[Pan19] R. Pandharipande, “Cohomological field theory calculations”
Not-too technical notes on cohomological field theories, focused on examples

[Sch20] J. Schmitt. “The moduli space of curves”
Algebro-geometric oriented notes on the moduli space of curves and its cohomology

[ACG11] E. Arbarello , M. Cornalba , P. A. Griffiths, “Geometry of Algebraic Curves, Vol. II”
A comprehensive text on Riemann surfaces and their moduli

Acknowledgments. We would like to thank the Les Houches School for providing an extraor-
dinary environment. We are also grateful to the participants for their enthusiasm, questions,
comments, and the fun. Thanks to Sara Perletti for providing us with the base manuscript for
these notes. Finally, we would like to thank Gaëtan Borot, Bertrand Eynard, Reinier Kramer,
Rahul Pandharipande, Adrien Sauvaget, Sergey Shadrin, and Dimitri Zvonkine for educating us
about moduli spaces over the past years.
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2. Moduli spaces of Riemann surfaces

In this section, we recall some facts about Riemann surfaces and their moduli space. The latter
has been a central object in mathematics since Riemann’s work in the mid-19th century, and
its compactification was defined more than 50 years ago by Deligne and Mumford [DM69] by
including stable curves. For a great one-hour introductory talk to the moduli spaces of Riemann
surfaces and its history, see [Pan18].

2.1. Definition of the moduli spaces.

Terminology. The primary focus of our study is on smooth, connected, compact, complex 1-
dimensional manifolds, simply called curves or Riemann surfaces, which have n labelled distinct
points (see M. Bertola’s lecture notes [Ber]). These will be denoted as

(Σ, p1, . . . , pn) . (2.1)

Each compact complex curve has an underlying structure of a real 2-dimensional orientable
compact surface, uniquely characterized by its genus g.

· · · · · ·

Our primary examples will be the sphere (genus 0) and the torus (genus 1). The sphere has a
unique structure as a Riemann surface up to isomorphism, identified as the complex projective
line P1. A complex curve of genus 0 is called a rational curve. The automorphism group of P1 is

PSL(2, C) =

{(
a b
c d

) ∣∣∣∣[a : b : c : d] ∈ P3

ad − bc ̸= 0

}
(2.2)

acting as (
a b
c d

)
.z =

az + b
cz + d

. (2.3)

As for genus 1, every Riemann surface structure on the torus is, up to isomorphism, obtained as
a quotient C/Λ. Here Λ is a lattice, that is an additive group of the form

Λ = { n1ω1 + n2ω2 | n1, n2 ∈ Z } (2.4)

for ω1, ω2 ∈ C that are linearly independent over the reals. A complex curve of genus 1 is
referred to as an elliptic curve.

As discussed in the introduction, we are interested in the moduli space of Riemann surfaces of a
fixed genus g with n marked points (and in particular, we want to make sense of integrals over
such space: the path integrals of 2D quantum gravity).
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Definition 2.1. The moduli space Mg,n is the set of isomorphism classes of Riemann surfaces of
genus g with n marked points:

Mg,n =

{
Riemann surfaces

of genus g with n marked points

}/
iso. (2.5)

For isomorphism between two objects (Σ, p1, . . . , pn) and (Σ′, p′1, . . . , p′n) we mean a biholomor-
phism ϕ : Σ → Σ′ that preserves the marked points: ϕ(pi) = p′i.

The above definition is perfectly well-posed, but we want to give it more structure. Recall that
our goal is to discuss integrals over the moduli space of Riemann surfaces, so a structure like
that of a manifold would be desirable. It turns out that there is a lot of geometry, but it is not
as nice as that of a manifold. The main reason is that Riemann surfaces have automorphisms.
The simplest example is P1, whose automorphism group is the infinite group PSL(2, C). Since
in the integration we want to quotient out by the group of symmetries, an infinite group of
automorphisms is bad news. In other words, M0,0 does not have a nice geometric structure.
There is however a way to get rid of automorphism by marking (at least three) points.

Exercise 2.1.

(1) Consider a genus 0 curve with three marked points (P1, p1, p2, p3). Find the (unique) g ∈ PSL(2, C)

that maps (P1, p1, p2, p3) to (P1, 0, 1, ∞).
(2) Consider a genus 0 curve with four marked points (P1, p1, p2, p3, p4). The element g ∈ PSL(2, C)

found in part (1) maps (P1, p1, p2, p3, p4) to (P1, 0, 1, ∞, t). Find an expression for t as a function1 of
p1, p2, p3, p4.

The above exercise shows that

M0,3 = { (P1, 0, 1, ∞) } = { ∗ } ,

M0,4 = { (P1, 0, 1, ∞, t) | t ̸= 0, 1, ∞ } = P1 \ { 0, 1, ∞ } .
(2.6)

One can generalise the above analysis to show that, for n ≥ 3,

M0,n =
{
(t1, . . . , tn−3) ∈ (P1 \ { 0, 1, ∞ })n−3

∣∣∣ ti ̸= tj

}
. (2.7)

This providesM0,n with a nice geometric structure.

Another bad example where the automorphism group is infinite is that of an elliptic curve E, for
which Aut(E) contains a subgroup isomorphic to E itself acting by translations. Again, we can
get rid of automorphisms (in this case, translations) by marking a point. If E = C/Λ, a natural
choice of marked point is the image of Λ ⊂ C, that is the identity element on the torus. Thus,
M1,1 = { lattices } /C∗, where C∗ acts by rescaling. To understand the quotient, let us fix a basis
(ω1, ω2) of Λ. Multiplying Λ by 1/ω1, we obtain an equivalent lattice with basis (1, τ) for τ in

1This is known as the cross-ratio, defined in deep antiquity (possibly already by Euclid) and considered by Pappus
who noted its key invariance property.
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Figure 1. The moduli spaceM1,1. The arcs AB and AB′ and the half-lines BC and
B′C′ are identified.

the upper half-plane H. Choosing another basis of the same lattice, that is acting by the group
SL(2, Z) of lattice base changes, we obtain another point τ′ ∈ H. Thus, we find that

M1,1 = H/SL(2, Z) . (2.8)

A fundamental domain for the quotient is shown in figure 1. After glueing, we see thatM1,1 is
topologically P1 \ {∞ }. However, lattices have non-trivial automorphisms. Indeed, the matrix
−Id acts trivially on H, so that the automorphism group of each point onM1,1 contains at least
Z2 as a subgroup. This is called the hyperelliptic involution of a marked elliptic curve. If we
write an elliptic curve as as (the compactification of) a degree 3 polynomial equation of the form

E : y2 = x3 + ax + b , (2.9)

then the hyperelliptic involution is simply the map y 7→ −y.

It is actually possible to completely characterise the automorphism group of each point τ in the
fundamental domain (see figure 2):

• for τ = eπi/3 = 1+i
√

3
2 corresponding to the hexagonal lattice, the automorphism group is Z6;

• for τ = eπi/2 = i corresponding to the square lattice, the automorphism group is Z4;
• for any other τ in the fundamental domain, the automorphism group Z2.

A theorem by A. Hurwitz implies that the automorphism group of any Riemann surface satisfy-
ing 2g − 2 + n > 0 is finite. Such a pair (g, n) is called stable. Conversely, every Riemann surface
with 2g − 2 + n ≤ 0 has an infinite group of automorphisms that preserve the marked points. In
other words:

Aut(Σg, p1, . . . , pn) is finite ⇐⇒ −χ = 2g − 2 + n > 0 . (2.10)

This precludes defining the moduli spaces M0,0, M0,1, M0,2, and M1,0 as nice geometric spaces.
(While they can still be considered as sets, this is not particularly useful.)
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Figure 2. The automorphism groups of lattices.

From now on, we will always assume 2g − 2 + n > 0. In this case the situation is good, but not
as good as it can get: there are still curves with non-trivial automorphism group, as the example
of M1,1 showed. Nonetheless, finiteness of the automorphism groups allows us to consider the
moduli space of Riemann surfaces as an orbifold.

Theorem 2.2. For 2g − 2 + n > 0, the moduli space Mg,n is a connected, smooth, complex orbifold of
dimension

dim(Mg,n) = 3g − 3 + n . (2.11)

Exercise 2.2. For the reader familiar with Riemann–Roch and Riemann–Hurwitz, convince yourself that
the complex dimension ofMg =Mg,0 is 3g − 3. This result was already known to Riemann himself, who
also coined the term “moduli space” (from the Latin word modus, meaning measure):

To this end, consider the moduli space of pairs (Σ, f ), where Σ is a genus g Riemann surface and f is a
degree d holomorphic map from Σ to P1 (i.e. a meromorphic function on X). Such a space is sometimes
referred to as a Hurwitz space, denoted Hg,d. Compute its dimension in two different ways.

• The dimension of Hg,d equals the dimension ofMg, counting the “number of deformation parameters”
of the Riemann surface Σ, plus the “number of deformation parameters” of the function f . Compute
the latter via Riemann–Roch.

• Directly compute the dimension of Hg,d using Riemann–Hurwitz.
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Conclude that dimMg = 3g − 3.

The definition of a smooth complex orbifold is rather technical, but similar in spirit to that of a
smooth complex manifold. The main difference is that locally an orbifold looks like an open set
of Cd/G, where G is a finite group. The simplest example of a complex orbifold to keep in mind
is the global quotient C/Zm, where Zm acts by rotation of 2π

m . In particular, it make sense to talk
about integration over complex orbifolds. For the example of C/Zm, given a function f : C → C

that is invariant under rotation of 2π
m , we can define∫

C/Zm

f (z, z̄)dz dz̄ =
1

|Zm|
∫

C
f (z, z̄)dz dz̄ . (2.12)

Most of the results that hold for manifolds extend (with proper modifications) to orbifolds. Here
is an example of the Euler characteristic.

Exercise 2.3. The Euler characteristic of an orbifold X is defined as

χ(X) = ∑
G

χ(XG)

|G| , (2.13)

where XG is the locus of points with automorphism group G. Prove that χ(M1,1) = − 1
12 . The formula

generalises to the celebrated Harer–Zagier formula [HZ86]:

χ(Mg,n) = (1 − 2g)n−1 ζ(1 − 2g) , (2.14)

where (x)m denotes the Pochhammer symbol (or falling factorial) and ζ(x) is the Riemann zeta func-
tion.Interestingly, the original computation by Harer and Zagier uses matrix model techniques.

Although integral over orbifolds are well-defined, there is another potential issue to deal with:
non-compactness.The non-compactness problem can be seen already from the examples ofM0,4

orM1,1. The latter is topologically P1 \ {∞ }, with the missing point at infinity being the source
of non-compactness. We actually see how this limit point is realised geometrically by considering
the family of elliptic curves

Et : y2 = x(x − 1)(x − t) , t ∈ (0, 1) . (2.15)

In the limit t → 0 or 1, the Riemann surface Et becomes degenerate. For instance, as t → 0 we
find y2 = x2(x − 1), which locally around x = 0 looks like the union of the two complex lines
y = ±x. This means that at x = 0 we have two meeting components, also known as a nodal
singularity, and the surface E0 will look as follows.

•
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Figure 3. The smoothening and the normalisation of a singular Riemann surface.
From the smoothening, one reads (g, n); from the normalisation, one reads the
stability condition.

In other words, the limit point ofM1,1 is not a torus anymore, but rather a pinched torus.

To make sense of integration over non-compact spaces we have two possibilities. The first one is
to consider only functions or differential forms with a certain decay at limit points. The second
option is to properly compactify the space of interest, and only consider regular functions or
differential forms on such compactification. We will follow the second route. It turns out that for
Mg,n the addition of Riemann surface with nodes is sufficient to get a nice compactification.

Definition 2.3. A stable Riemann surface of genus g with n labelled marked points p1, . . . , pn is a
possibly singular, compact, connected, complex 1-dimensional manifold Σ such that:

• the genus of the surface obtained from Σ by smoothening all its nodes is g (see figure 3),
• the only singularities of Σ are nodes,
• the marked points are distinct and do not coincide with the nodes, and
• (Σ, p1, . . . , pn) has a finite number of automorphisms.

We can then define a moduli space parametrising isomorphism classes of stable Riemann surfaces,
often called the Deligne–Mumford moduli space [DM69]:

Mg,n =

{
stable Riemann surfaces

of genus g with n marked points

}/
iso. (2.16)

The last condition in the above definition can be reformulated as follows. Let Σ1, . . . , Σk be
the connected components of the surface obtained by separating all the branches of the nodes
(this process is called normalisation, see figure 3). Let g(v) be the genus of Σv and n(v) the
number of special points, i.e., marked points and preimages of the nodes on Σi. Then the “finite
automorphisms” condition is satisfied if and only if 2g(v)− 2 + n(v) > 0 for all v.

The main result about the Deligne–Mumford moduli space is that it provides a compactification
of the moduli space of Riemann surfaces.

Theorem 2.4. For 2g − 2 + n > 0, the moduli spaceMg,n

• is a connected, smooth, complex, compact orbifold of dimension dim(Mg,n) = 3g − 3 + n;
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• it containsMg,n as an open dense subset.

The set ∂Mg,n =Mg,n \Mg,n is called the boundary of the moduli space.

Now that we have a compact space, we can safely talk about integration. More generally, we
have a nice (co)homology algebra(

H•(Mg,n, Q),⌢
)

and
(

H•(Mg,n, Q),⌣
)
, (2.17)

where the algebra structure is with respect to the cap/cup product (corresponding to intersec-
tion of subvarieties/wedge of differential forms respectively). The Q coefficients are due to the
orbifold structure, and one can safely take C coefficients if they prefer. The two are dual via
Poincaré duality:

Hk(Mg,n, Q) ∼= H2(3g−3+n)−k(Mg,n, Q) . (2.18)

Most importantly, we have a well-defined fundamental class against which we can integrate
cohomology classes to get a number:∫

Mg,n

α ∈ Q , α ∈ H2(3g−3+n)(Mg,n, Q) . (2.19)

Since taking cap products in cohomology (i.e. wedges of differential forms) amounts to take cup
products in homology (i.e. intersection of subvarieties), the theory of integration on compact
moduli spaces is often called intersection theory.

2.2. Stratification and tautological maps. Before discussing the cohomology of Mg,n and its
intersection theory further, let us analyse in more details the compactification. The main picture
to keep in mind is the following: most of the points of Mg,n are smooth Riemann surfaces that
live onMg,n, but by contracting cycles we produce stable singular Riemann surfaces that live on
the boundary ∂Mg,n. By performing this procedure once, we create a single node. By repeatedly
performing such operation, we create Riemann surfaces that are more and more singular. See
figure 4 for an illustration.

As an example, consider the space M0,4. On the boundary ∂M0,4 we find the singular Riemann
surface made of two P1’s glued together to form a node and each with two marked points.
These can be realised from a smooth rational curve with four marked points by contracting a
cycle separating the marked points into two-plus-two. We have three possible configurations,
corresponding to the three possible ways of splitting (p1, p2, p3, p4) into two disjoint sets contain-
ing two points each.

•
p1

•
p2

•
p3

•
p4

•
p1

•
p3

•
p2

•
p4

•
p1

•
p4

•
p2

•
p3
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•

•

•

•

•

•

Figure 4. An illustration of the compactified moduli spaceMg,n.

Notice that the above stable Riemann surfaces have no moduli: each rational component of the
normalisation has three special points (the two marked points and a branch of the node), which
can always be brought to (0, 1, ∞). Another way of saying it is that we can realise each of the
above stable Riemann surfaces as M0,3 ×M0,3. Recalling that M0,4 = P1 \ { 0, 1, ∞ }, we obtain
that

M0,4 =M0,4 ⊔ (M0,3 ×M0,3)
⊔3 = P1 , (2.20)

which is indeed compact.

As for M1,1, the only element in the boundary ∂M1,1 is the pinched torus with a marked point
encountered before. Again, the pinched torus has no moduli, as its normalisation is a rational
with three marked points. However, the pinched torus has Z2 as an automorphism group.
Another way of saying it is to realise it asM0,3/Z2. This gives

M1,1 =M1,1 ⊔ (M0,3/Z2) , (2.21)

which is topologically a P1 but with orbifold structure given by a point of automorphism Z6, a
point of automorphism Z4, and all other points of automorphism Z2.

It should be clear from the above examples that the compactification ofMg,n has a sort of recur-
sive structure, obtained by pinching cycles and reducing the topology of the Riemann surface by
breaking it up into pieces. We can keep track of this via certain graphs. Consider Figure 14 for
an illustration.

Definition 2.5. The stable graph associated with a stable Riemann surface (Σ, p1, . . . , pn) ∈ Mg,n

is the graph Γ obtained by associating:

• a vertex v to each component of the normalisation, decorated by the genus g(v) of the com-
ponent;

• a leaf to each marked point pi, labelled by i accordingly;
• an edge to each node.
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•

•
•

p1

p2
p3

1

2 3

21

1

Figure 5. A stable Riemann surface and the associated stable graph.

The genus of a stable graph Γ is

g(Γ) = ∑
v∈V(Γ)

g(v) + h1(Γ) , (2.22)

where V(Γ) is the set of the vertices of the graph and h1(Γ) denotes the first Betti number (i.e.
the number of faces) of Γ. It coincides with the genus of Σ. We also denote by E(Γ) the set of
edges and by n(v) the valency of the vertex v (that is, the number of leaves and half-of-edges
incident to v). The latter corresponds to the number of special points (that is, marked points and
branches of nodes) on the component corresponding to the vertex v.

We remark that the stability condition implies that 2g(v)− 2 + n(v) > 0 for all v ∈ V(Γ). This
guarantees that for each (g, n), called the type, there are only finitely many stable graphs of
genus g with n leaves. Such stable graphs provides a stratification of Mg,n: for a given Γ of type
(g, n), set

MΓ =

{
(Σ, p1, . . . , pn) ∈Mg,n

∣∣∣∣ Γ is the stable graph
associated with (Σ, p1, . . . , pn)

}
. (2.23)

Then we get the stratification

Mg,n =
⊔

Γ type (g,n)

MΓ . (2.24)

We have already analysed thoroughly the cases ofM0,4 andM1,1, whose stable graphs are given
as follows.

(0, 4):

1

2 3

4

0

1

2

3

4

0 0

1

3

2

4

0 0

1

4

2

3

0 0

(1, 1): 1 1 1 0
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Another example is that ofM2:

dim(MΓ)

32

1 21 1

0 10 1

0

0

0 0 0

Here we drew the strata in correspondence to the type of stable Riemann dual to the graph and
on different levels according to the number of edges. Note that contraction of cycles is dual to
contraction of edges.

Exercise 2.4.

(1) List all strata ofM2,1.
(2) Consider a stable graph Γ of type (g, n). Show that the dimension of the stratum is dim(MΓ) =

dim(Mg,n)− |EΓ|.

The fact that the strata ofMg,n are parametrised by smaller-dimensional spacesMΓ is sometimes
called the recursive boundary structure of Mg,n. It is one of the most important features of the
moduli space of Riemann surfaces and the proofs of many results about Mg,n (including the
computation of integrals) use it in a very essential way.

One way of taking advantage of it is by defining glueing maps. More precisely, for each stable
graph Γ of type (g, n) we define

ξΓ : MΓ = ∏
v∈V(Γ)

Mg(v),n(v) −→Mg,n , (2.25)

which sends the stable Riemann surface ((Σv)v∈V(Γ), (qh, qh′)e=(h,h′)∈E(Γ), p1, . . . , pn) to the stable
Riemann surface (Σ, p1, . . . , pn) obtained by glueing all pairs (qh, qh′) of points corresponding to
pairs e = (h, h′) forming edges of Γ. The image ofMΓ under ξΓ coincide with the closure ofMΓ.

The easiest case is that of a stable graph Γ with a single edge e. We have two possible cases: the
edge is non-separating (i.e. a loop) or it is.



14 A. GIACCHETTO AND D. LEWAŃSKI

Non-separating edge. It corresponds to the following stable graph:

1

··
·

n

g − 1 . (2.26)

Thus, the glueing map, called the glueing map of non-separating kind, is given by

ρ : Mg−1,n+2 −→Mg,n , e.g.
••
•

p1 q

q′
7−→ •

p1
. (2.27)

To be pedantic, ρ should depend on (g, n). We omit the dependence for a lighter notation.

Separating edge. It corresponds to the following stable graph:

··
·I1 ··
· I2g1 g2 (2.28)

where g = g1 + g2 is a splitting of the genus and I1 ⊔ I2 = { p1, . . . , pn } is a splitting of the
marked points. Thus, the corresponding glueing map, called the glueing map of separating kind,
is given by

σ : Mg1,1+|I1| ×Mg2,1+|I2| −→Mg,n , e.g. ••
p1 q

, •
•

•
q′

p2

p3

7−→ •
p1 •

•

p2

p3

. (2.29)

To be pedantic, σ should depend on (g, n) and the choice of splitting of the genus and marked
points.

Notice how the above terms corresponds to the terms appearing in the topological recursion
formula (see V. Bouchard’s lecture notes [Bou]). This is not a coincide, as we will see in section 3.

We conclude this section with one more natural map between moduli spaces: the forgetful map.
This is the maps that forgets the last marked point:

π : Mg,n+1 −→Mg,n , (Σ, p1, . . . , pn, pn+1) 7−→ (Σ, p1, . . . , pn)
stab . (2.30)

Again, to be pedantic, π should depend on (g, n). We omit the dependence for a lighter notation.
The suffix ‘stab’ stands for ‘stabilisation’. Indeed, it may happen that, when forgetting a marked
point, the resulting Riemann surface is not stable. This is the case of a marked point pn+1 on a
rational component with only three special points. The stabilisation process simply contracts this
component to a point. If the resulting Riemann surface is still not stable, we keep contracting
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unstable components until we find a stable result. For example:

•
p1 •

•

p2

p3

7−→
 •

p1 •
p2
stab

= •
p1

• p2 . (2.31)

The glueing maps ρ, σ and the forgetful map π are sometimes referred to as the tautological
maps. We will see shortly that they play a crucial role in the intersection theory of the moduli
space of Riemann surfaces. The main takeaway is that, thanks to the compactification and the
introduction of the tautological maps, we can think about the moduli spaces as a collection
of spaces connected by maps (rather than “isolated” spaces). In particular, we can talk about
pullback and pushforward in cohomology.

Let us recall these operation for an arbitrary smooth map

ϕ : M −→ N (2.32)

between smooth real orbifolds of real dimensions dimR(M) = m and dimR(N) = n.

Pullback. The pullback is always a well-defined contravariant operation in cohomology corre-
sponding to pre-composition. More precisely, it is a degree-preserving map

ϕ∗ : Hk(M) −→ Hk(N) . (2.33)

In terms of differential forms, write locally ϕ as (x1, . . . , xm) 7→ (y1(x), . . . , yn(x)) and let η be a
k-form on N locally expressed as η = ηµ1,...,µk(y)dyµ1 ∧ · · · ∧ dyµk (we use Einstein’s notation for
the summation over repeated indices). Then

ϕ∗η = ηµ1,...,µk(y(x))dyµ1(x) ∧ · · · ∧ dyµk(x) . (2.34)

The pullback is compatible with both addition and cup product.

Pushforward. The pushforward is well-defined only for maps ϕ with compact fibres. In this
case, the pushforward defines a covariant operation in cohomology, which corresponds to the
geometric idea of “integration along fibres”. More precisely, if we denote by r the real dimension
of the fibres of ϕ, then

ϕ∗ : Hk(M) −→ Hk−r(N) . (2.35)

In terms of differential forms, write locally ϕ as (x1, . . . , xr, y1, . . . , yn) 7→ (y1, . . . , yn) and let ω be
a k-form on M locally expressed as ω = ων1,...,νk−r(x, y)dx1 ∧ · · · ∧ dxr ∧ dyν1 ∧ · · · ∧ dyνk−r + · · · .
The dots stand for terms with a lower number of dx’s. Then

(ϕ∗ω)q =

(∫
ϕ−1(q)

ων1,...,νk−r(x, q)dx1 ∧ · · · ∧ dxr

)
dqyν1 ∧ · · · ∧ dqyνk−r (2.36)

for all q ∈ N. The pushforward is compatible with the addition addition, but it does not respect
the cup product.
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The definition generalises via Poincaré duality whenever both M and N are compact. In this
case, the pushforward is simply the pre-composition and post-composition of the pushforward
in homology by Poincaré duality:

ϕ∗ : Hk(M)
PD∼= Hm−k(M) −→ Hm−k(N)

PD∼= Hk−(m−n)(N) . (2.37)

It coincides with the “integration along fibres” whenever ϕ has compact fibres (whose dimension
is r = m − n).

Projection formula. In the case of compact fibres, there is a useful formula, known as projection
formula, which expresses integrals over M as integrals over N. More precisely: if ω ∈ Hk(M)

and η ∈ Hm−k(N), then ∫
M

ω ∧ ϕ∗η =
∫

N
ϕ∗ω ∧ η . (2.38)

2.3. Intersection theory and Witten’s conjecture. Recall our main goal: to define and compute
integrals over the moduli space of Riemann surfaces. Since Mg,n is a compact orbifold, we can
finally discuss integrals of top cohomology classes. However, we do not yet have natural classes
to integrate. There are two natural sources of cohomology classes.

• The Poincaré dual of natural (complex) subspaces.
• Chern classes of natural complex vector bundles over.

In both cases, cohomology classes of even degree are produced. For this reason, when mul-
tiplying classes in cohomology, we will always omit the cap product since the cap product of
even-degree cohomology classes is commutative.

We have already encountered several subspaces ofMg,n, namely the boundary strata. Recall that
for a fixed stable graph Γ of type (g, n), the associated subspace MΓ has complex dimension
dim(Mg,n)− |E(Γ)|. We deduce that the Poincaré dual, denoted by brackets [ · ], lives in

[Γ] ∈ H2|E(Γ)|(Mg,n, Q) . (2.39)

It can be expressed as a pushforward along the glueing maps:

[Γ] =
1

|Aut(Γ)| ξΓ,∗1 . (2.40)

The element 1 in the right-hand side is the unit in H•(MΓ, Q). In particular, the Poincaré dual
of the entire space, corresponding to the stable graph with a single vertex of genus g, no edges,
and n leaves, is the unit in cohomology:[

1

··
·

n
g

]
= 1 ∈ H0(Mg,n, Q) . (2.41)

Let us discuss now Chern classes of complex vector bundles. A complex vector bundle over
Mg,n is the assignment of a complex vector space to each isomorphism class of stable Riemann
surfaces in such a way that, as the stable Riemann surface varies within the moduli space, the
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assigned vector spaces vary smoothly and are coherently glued together. Once a complex vector
bundle V →Mg,n is given, we can consider its Chern classes:

ck(V) ∈ H2k(Mg,n, Q) , k = 0, 1, . . . , rk(V) , (2.42)

where rk(V) denotes the complex rank of V , that is, the complex dimension of the fibres. The
0-th Chern class is always the unit in cohomology: c0(V) = 1. Chern classes are topological
invariants associated with complex vector bundles and offer a simple test to determine whether
two vector bundles are not isomorphic: if the Chern classes of a pair of vector bundles differ, then
the vector bundles are distinct (the converse, however, is not necessarily true). Geometrically,
they provide information about the number of linearly independent sections a vector bundle has
and can be expressed as polynomials in the coefficients of the curvature form of a Hermitian
connection ∇ on V (the cohomology class does not depend on the choice of connection):

c(V ; t) =
rk(V)

∑
k=0

ck(V) tk = det
(

Id − t
F∇
2πi

)
. (2.43)

The first example of such a holomorphic vector bundle is the so-called i-th cotangent line bundle:
for each i ∈ { 1, . . . , n }, set

Li −→Mg,n , Li|(Σ,p1,...,pn) = T∗
pi

Σ . (2.44)

In other words, the fibre over (Σ, p1, . . . , pn) is the holomorphic cotangent space at the i-th marked
point. Since T∗

pi
Σ is a complex vector space of dimension 1, the associated bundle Li has complex

rank 1: it is a line bundle. We then consider its first Chern class:

ψi = c1(Li) ∈ H2(Mg,n, Q) . (2.45)

These are called Morita–Miller–Mumford classes, or simply ψ-classes. As usual, strictly speaking,
ψ-classes should depend on (g, n). We omit this dependence, that is hopefully clear from the
context. As we will see shortly, ψ-classes appear in the seminal work of Witten on topological
2D gravity [Wit91] and represent a cornerstone of all physical theories connected to the moduli
space of Riemann surfaces, such as JT gravity and topological string theory.

From the ψ-classes, we can derive new cohomology classes that are projections of forgotten
points: the Arbarello–Cornalba classes, or simply κ-classes, defined as

κm = π∗
(
ψm+1

n+1

)
∈ H2m(Mg,n, Q) , m = 0, . . . , 3g − 3 + n , (2.46)

where π : Mg,n+1 →Mg,n is the forgetful map. Since the fibres of π are compact and one-
dimensional, the pushforward is well-defined in cohomology and decreases the complex co-
homological degree by 1. As we will see shortly, the class 2π2κ1, called the Weil–Petersson class,
plays a fundamental role in JT theory and hyperbolic geometry.

A third collection of natural cohomology classes consists of those arising from the most natural
vector space associated with a Riemann surface: the space of holomorphic differentials. More
precisely, define the Hodge bundle

H −→Mg,n , H |(Σ,p1,...,pn) = Ω(Σ) . (2.47)
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(Σ, p1, . . . , pn)
•

•

•

T∗
pi

Σ

•

•

•

•

•

•

Figure 6. An illustration of the cotangent line bundle Li.

Here, Ω(Σ) denotes the space of holomorphic forms on Σ, which is a complex vector space of
dimension g. One should be cautious, however, regarding the definition of holomorphic forms
on Riemann surfaces with nodes (that is, the definition of H on the boundary of the moduli
space). In order to understand how holomorphic forms should be defined on nodal Riemann
surfaces, consider the example

Et : y2 = x(x − 1)(x − t) . (2.48)

For t ̸= 0, the space of holomorphic forms on Et is one dimensional and generated by

ωt =
dx
y

=
dx√

x(x − 1)(x − t)
. (2.49)

As t → 0, the torus degenerates into a pinched torus, and the holomorphic form ωt limits to

ω0 =
dx

x
√

x − 1
. (2.50)

One can verify in local coordinates that ω0 is no longer holomorphic, but is instead meromorphic
with a simple pole at the node and opposite residues at the two branches of the node. The pres-
ence of this simple pole is crucial. Indeed, the pinched torus is a P1 with two points identified;
on P1, there are no non-trivial holomorphic forms; however, there exists a one-dimensional com-
plex vector space of meromorphic forms with simple poles at the two special points and opposite
residues. In other words, the dimension of Ω(Et) is preserved even in the limit t → 0.

The definition of Ω(Σ) is thus

Ω(Σ) =

{ meromorphic form on Σ
with at most simple poles at the nodes, opposite residues

and holomorphic everywhere else

}
, (2.51)

which has constant dimension g as Σ moves within Mg,n (it does not depend on the marked
points). We then define the Hodge classes, or simply λ-classes, as the Chern classes of the Hodge
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bundle:

λk = ck(H ) ∈ H2k(Mg,n, Q) , k = 0, . . . , g , (2.52)

As we will briefly mention in section 4, the Hodge class plays a fundamental role in topological
string theory.

We conclude this section with a brief overview of Witten’s conjecture. We begin with two facts
regarding ψ-class intersection numbers, also known as Witten’s correlators: the string and dilaton
equations. These are equations relating integrals of ψ-classes over different moduli spaces. Such
integrals are conveniently written following Witten’s notation as

⟨τd1 · · · τdn⟩g =
∫
Mg,n

ψd1
1 · · ·ψdn

n , di ≥ 0 . (2.53)

The integral is set to be zero unless d1 + · · ·+ dn = 3g − 3 + n, in which case the integrand is a
top-dimensional cohomology class.

• Geometric string equation. The pullback of ψ-classes along the forgetful map is given by

π∗ψi = ψi −
 1

··
·

n
î

i

n + 1

g 0

 . (2.54)

The ψ-class on the left-hand side lives in Mg,n, while the one on the right-hand side lives in
Mg,n+1.

• Geometric dilaton equation. The 0-th κ-class on Mg,n is equal to (minus) the Euler charac-
teristic:

κ0 = (2g − 2 + n) 1 ∈ H0(Mg,n, Q) . (2.55)

Exercise 2.5. Employ the geometric string and dilaton equations, together with the projection formula and
the expression (2.40) for the Poincaré dual of boundary strata, to prove the following equations satisfied by
Witten’s correlators.

• String equation. Integrals overMg,n+1 with no ψn+1 are reduced to integrals overMg,n:

∫
Mg,n+1

ψd1
1 · · ·ψdn

n =
n

∑
i=1

∫
Mg,n

(
∏
j ̸=i

ψdi
i

)
ψdi−1

i . (2.56)

In Witten’s notation, the string equation amounts to the removal of a τ0:

⟨τd1 · · · τdn τ0⟩g =
n

∑
i=1

⟨τd1 · · · τdi−1 · · · τdn⟩g . (2.57)

� Hints.
– By looking at cohomological degrees, what can you say about

∫
Mg,n+1

π∗α for α ∈ H2(3g−3+n)(Mg,n, Q)?

– Let Di =
[ 1

··
·

n

i

n + 1
g 0

]
. Interpreting it as a Poincaré dual, one can see that Di · Dj = 0 for all i ̸= j.
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• Dilaton equation. Integrals over Mg,n+1 with a single power of ψn+1 are reduced to integrals over
Mg,n: ∫

Mg,n+1

ψd1
1 · · ·ψdn

n ψn+1 = (2g − 2 + n)
∫
Mg,n

ψd1
1 · · ·ψdn

n . (2.58)

In Witten’s notation, the string equation amounts to the removal of a τ1:

⟨τd1 · · · τdn τ1⟩g = (2g − 2 + n) ⟨τd1 · · · τdn⟩g . (2.59)

The string and dilaton equations allow for the computation of all Witten’s correlators in genus 0
and 1.

Exercise 2.6. Knowing the string equation and the integral
∫
M0,3

1 = ⟨τ3
0 ⟩0 = 1, show that all genus 0,

ψ-class intersection numbers are determined. Can you prove the following closed formula:

⟨τd1 · · · τdn⟩0 =

(
n − 3

d1, . . . , dn

)
, (2.60)

where ( D
d1,...,dn

) = D!
d1!···dn ! is the multinomial coefficient?

Exercise 2.7. Knowing the string equation, the dilaton equation, and the integral
∫
M1,1

ψ1 = ⟨τ1⟩1 = 1
24 ,

show that all genus 1, ψ-class intersection numbers are determined. Can you prove the following closed
formula:

⟨τd1 · · · τdn⟩1 =
1
24

((
n

d1, . . . , dn

)
− ∑

ϵ1,...,ϵn∈{ 0,1 }

(
n − |ϵ|

d1 − ϵ1, . . . , dn − ϵn

)
(|ϵ| − 2)!

)
, (2.61)

where |ϵ| = ϵ1 + · · ·+ ϵn?

While the genus 0 initial value ⟨τ3
0 ⟩0 = 1 is trivially satisfied, the genus 1 case ⟨τ1⟩1 = 1

24 is
rather non-trivial. This can be computed using the geometry of the moduli space M1,1 and its
connection to modular forms.

Exercise 2.8. Prove that ⟨τ1⟩1 = 1
24 using the following facts.

(1) The following identity holds for arbitrary line bundle L: c1(L) = 1
k c1(L⊗k).

(2) For an arbitrary line bundle L, we have c1(L) = [Z − P], where Z and P are the divisors of zeros and
poles of a generic meromorphic section of L and [ · ] denotes the Poincaré dual2.

(3) Consider the cotangent line bundle L⊗k
1 →M1,1. There is a canonical identification of the vector space

of holomorphic sections of L⊗k
1 and the vector space of modular forms of weight k.

2Poincaré duality for orbifolds involves the automorphism group. More precisely, if Z is a sub-orbifold of X with
underlying topological space Ẑ, then [Z] = 1

|G| [Ẑ], where G is the automorphism group of a generic point in Ẑ.
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(4) The following (combination of) Eisenstein series

G4(τ) = ∑
λ∈(Z+τZ)\{ 0 }

1
λ4 ,

G6(τ) = ∑
λ∈(Z+τZ)\{ 0 }

1
λ6 ,

G̃12(τ) =

(
G4(τ)

2ζ(4)

)3

−
(

G6(τ)

2ζ(6)

)2

,

(2.62)

are modular forms of weight 4, 6, and 12 respectively. Furthermore, they have a unique simple zero at
τ = 1+i

√
3

2 , τ = i, and τ = +i∞ respectively.

We can now state Witten’s conjecture. To start with, let us package Witten’s correlators in a single
generating series: let td (for d ≥ 0) be a set of formal variables and set

Z(t0, t1, t2, . . . ; h̄) = exp

 ∑
g≥0, n≥1

2g−2+n>0

h̄2g−2+n

n! ∑
d1,...,dn≥0

⟨τd1 · · · τdn⟩g

n

∏
i=1

tdi

 . (2.63)

The generating series Z arises as a partition function in topological 2D quantum gravity. The
string and dilaton equations may be written as differential operators annihilating Z in the fol-
lowing way.

Exercise 2.9. Define the differential operators

L−1 = h̄
∂

∂t0
− h̄2

(
∑
k≥1

tk
∂

∂tk−1
+

t2
0
2

)
, (2.64)

L0 = h̄
∂

∂t1
− h̄2

(
∑
k≥0

2k + 1
3

tk
∂

∂tk
+

1
24

)
. (2.65)

Prove the following:

• The string equation and ⟨τ3
0 ⟩0 are equivalent to the equation L−1 Z = 0.

• The dilaton equation and ⟨τ1⟩1 = 1
24 are equivalent to the equation L0 Z = 0.

The operators L−1 and L0 may be viewed as the beginning of (a representation of a subalgebra of)
the Virasoro algebra. More precisely, consider the Lie algebra Vir≥−1 of holomorphic differential
operators spanned by

Ln = − zn+1 ∂

∂z
, n ≥ −1 . (2.66)

The bracket is given by [Lm, Ln] = (m − n)Lm+n.

The collection (L−1, L0) of differential operators can be uniquely extended (under a certain ho-
mogeneity restriction) to a complete representation of (an h̄-deformation of) Vir≥−1. For n ≥ 1,
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these are given by

Ln = h̄
∂

∂tn+1
− h̄2

∑
k≥0

(2n + 2k + 1)!!
(2n + 3)!!(2k − 1)!!

tk
∂

∂tk+n
+

1
2 ∑

a,b≥0
a+b=n−1

(2a + 1)!!(2b + 1)!!
(2n + 3)!!

∂2

∂ta∂tb

 .

(2.67)
Here m!! denotes the double factorial, defined recursively as m!! = m · (m − 2)!! with initial
conditions 0!! = 1!! = 1. These are precisely the differential constraints appearing in Bouchard’s
course [Bou]!!

Exercise 2.10. Prove that the collection (Ln)n≥−1 of differential operators defined by equations (2.64),
(2.65) and (2.67) is indeed a representation of Vir≥−1:

[Lm, Ln] = h̄2(m − n)Lm+n . (2.68)

This, together with the form (2.67) of the operators, proves that (Ln)n≥−1 form an Airy ideal [Bou].

Theorem 2.6 (Witten’s conjecture/Kontsevich’s theorem). The differential operators (Ln)n≥−1 anni-
hilate the partition function Z:

Ln Z = 0 ∀n ≥ −1 . (2.69)

Moreover, the above system of equations (known as Virasoro constraints) uniquely determine all inter-
section numbers.

We remark that Witten’s original formulation of his conjecture states that Z is the unique tau-
function of the Korteweg–de Vries (KdV) hierarchy satisfying the string equation L−1 Z = 0. The
KdV hierarchy is an infinite sequence of partial differential equations which extends in a certain
sense the KdV equation. The equivalent statement in terms of Virasoro constraints was proved
by R. Dijkgraaf, H. Verlinde, E. Verlinde [DVV91].

Exercise 2.11. Show that the Virasoro constraints are equivalent to the following topological recursion
for Witten’s correlators:

⟨τd1 · · · τdn⟩g =
n

∑
m=2

(2d1 + 2dm − 1)!!
(2d1 + 1)!! (2dm − 1)!!

⟨τd1+dm−1τd2 · · · τ̂dm · · · τdn⟩g

+
1
2 ∑

a+b=d1−2

(2a + 1)!! (2b + 1)!!
(2d1 + 1)!!

(
⟨τaτbτd2 · · · τdn⟩g−1

+ ∑
g1+g2=g

I1⊔I2={ d2,...,dn }

⟨τaτI1⟩g1
⟨τbτI2⟩g2

)
. (2.70)

Prove that the above recursion is equivalent to the Eynard–Orantin topological recursion formula [EO07]
(see [Bou]) on the Airy spectral curve (P1, x(z) = z2

2 , y(z) = z, ω0,2(z1, z2) =
dz1dz2
(z1−z2)2 ):

ωg,n(z1, . . . , zn) = (−1)n ∑
d1,...,dn≥0

d1+···+dn=3g−3+n

⟨τd1 · · · τdn⟩g

n

∏
i=1

(2di + 1)!!

z2di+2
i

dzi . (2.71)
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(g, n) ⟨τd1 · · · τdn⟩g ∗

(0, 3) ⟨τ3
0 ⟩0 1

(0, 4) ⟨τ3
0 τ1⟩0 1

(0, 5)
⟨τ4

0 τ2⟩0 1

⟨τ3
0 τ2

1 ⟩0 2

(0, 6)

⟨τ5
0 τ3⟩0 1

⟨τ4
0 τ1τ2⟩0 3

⟨τ3
0 τ3

1 ⟩0 6

(0, 7)

⟨τ6
0 τ4⟩0 1

⟨τ5
0 τ1τ3⟩0 4

⟨τ5
0 τ2

2 ⟩0 6

⟨τ4
0 τ2

1 τ2⟩0 12

⟨τ3
0 τ4

1 ⟩0 24

(g, n) ⟨τd1 · · · τdn⟩g ∗

(1, 1) ⟨τ1⟩1
1

24

(1, 2)
⟨τ0τ2⟩1

1
24

⟨τ2
1 ⟩1

1
24

(1, 3)

⟨τ2
0 τ3⟩1

1
24

⟨τ0τ1τ2⟩1
1

12

⟨τ3
1 ⟩1

1
12

(1, 4)

⟨τ3
0 τ4⟩1

1
24

⟨τ2
0 τ1τ3⟩1

1
8

⟨τ2
0 τ2

2 ⟩1
1
6

⟨τ0τ2
1 τ2⟩1

1
4

⟨τ4
1 ⟩1

1
4

(g, n) ⟨τd1 · · · τdn⟩g ∗

(2, 1) ⟨τ4⟩2
1

1152

(2, 2)

⟨τ0τ5⟩2
1

1152

⟨τ1τ4⟩2
1

384

⟨τ2τ3⟩2
29

5760

(3, 1) ⟨τ7⟩3
1

82944

(3, 2)

⟨τ0τ8⟩3
1

82944

⟨τ1τ7⟩3
5

82944

⟨τ2τ6⟩3
77

414720

⟨τ3τ5⟩3
503

1451520

⟨τ2
4 ⟩3

607
1451520

(4, 1) ⟨τ10⟩4
1

7962624

Table 1. Some ψ-classes intersection numbers, computed using the topological
recursion relation (2.70).

As mentioned in the introduction, Witten’s motivation for the above conjecture finds its roots in
2D quantum gravity. In the classical setting, the spacetime is a surface while the gravitational
field is a Riemannian metric on the surface itself. In an attempt to quantise such a theory,
one should compute a certain integral over the space of all possible Riemannian metrics on all
possible surfaces. The space of Riemannian metrics over a fixed topological surface is infinite-
dimensional, and there are two possible ways to give meaning to such an ill-defined quantity.

• The first way is to approximate the Riemann surface by small triangles. Thus, the integral
over all metrics is replaced by a sum over triangulations. This combinatorial problem can
be solved, and the Virasoro constraints appeared in works devoted to the enumeration of
triangulations on surfaces, which can be related to matrix models.

• Alternatively, one can compute the partition function by integrating first over all conformally
equivalent metrics. Afterward, the remaining integral is performed over the moduli space of
Riemann surfaces, and, more precisely, one has to compute integrals of the form ⟨τd1 · · · τdn⟩g.

Witten’s conjecture states that the partition functions resulting from the two approaches coincide,
based on the physical expectation that there is a unique theory of gravity.

Kontsevich’s proof follows the matrix model/discretisation idea (see [Zvo] for a rigorous proof).
He started by considering the moduli space of metric ribbon graphs of genus g with n faces of
fixed length L1, . . . , Ln, which comes with a natural (symplectic) volume form. By interpreting
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metric ribbon graphs as a discretisation of Riemannian metrics, he expressed these volumes
precisely as the ψ-class intersection numbers

Vg,n(L1, . . . , Ln) =
∫
Mg,n

exp

(
1
2

n

∑
i=1

L2
i ψi

)

= ∑
d1,...,dn≥0

d1+···+dn=3g−3+n

⟨τd1 · · · τdn⟩g

n

∏
i=1

L2di
i

2di di!
.

(2.72)

Note that Vg,n(L1, . . . , Ln) is a symmetric polynomial in the boundary lengths squared. The
Laplace transform of such a volume is computed as the rational function

V̂g,n(λ1, . . . , λn) =

(
n

∏
i=1

∫ ∞

0
dLi e−λi Li

)
Vg,n(L1, . . . , Ln)

= ∑
d1,...,dn≥0

d1+···+dn=3g−3+n

⟨τd1 · · · τdn⟩g

n

∏
i=1

(2di − 1)!!

λ2di+1
i

.
(2.73)

Notice that (dλ1 · · ·dλn)V̂g,n(λ) = ωg,n(λ) is precisely the topological recursion correlator from
(2.71) computed from the Airy spectral curve.

As Vg,n(L1, . . . , Ln) is the volume of the moduli space of metric ribbon graphs of genus g with
n faces of fixed length L1, . . . , Ln, he obtained an expression for the Laplace transform as a sum
over ribbon graphs:

V̂g,n(λ1, . . . , λn) = 22g−2+n ∑
G

1
|Aut(G)| ∏

e=(i,j)∈E(G)

1
λi + λj

, (2.74)

where the sum is over all trivalent ribbon graphs of genus g with n faces labelled by 1, . . . , n. The
notation e = (i, j) stands for the two (possibly equal) faces bounded by G.

For example, take g = n = 1. In this case there is a single trivalent ribbon graph given by

•

•

(2.75)

which has automorphism group Z6 (the cyclic permutation of the edges and the permutation of
the vertices). Then Kontsevich’s formula (2.74) gives

V̂1,1(λ1) = 2 · 1
6
·
(

1
2λ1

)3

=
1
24

1
λ3

1
, (2.76)

which indeed gives ⟨τ1⟩1 = 1
24 , following (2.73).

On the one hand, Kontsevich’s theorem gives a sum of graphs, where each graph is weighted
by its symmetry factor and by a product of edge weights. This is typically the kinds of graphs
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100

g

Figure 7. The 2-point correlators normalised by their leading asymptotic: notice
the convergence to 1 + O(g−1). Note also the different convergence behaviour:
this hints at subleading terms that do depend on the partition (d1, . . . , dn). This is
indeed the case, and it can be proved via resurgence.

obtained from Wick’s theorem, and therefore it can be obtained with a perturbation of a Gaussian
Hermitian matrix integral. Specifically, trivalent ribbon graphs are generated by a cubic formal
matrix integral, the so-called Airy matrix integral:

Z(Λ) =
1

Z0(Λ)

∫
dX exp

(
N tr

[
X3

3
− ΛX2

])
, Λ = diag(λ1, . . . , λN) . (2.77)

Here Z0(Λ) = (π/N)N2/2 ∏i,j(λi + λj)
−1/2 is a normalisation constant. By Wick’s theorem, one

can write the large N expansion of log Z(Λ) as a sum over trivalent ribbon graphs:

log Z(Λ) = ∑
g≥0, n≥1

2g−2+n>0

N−(2g−2+n)

n! ∑
G

1
|Aut(G)| ∏

e=(i,j)∈E(G)

1
λi + λj

, (2.78)

where the sum is over all trivalent ribbon graphs of genus g with n labelled faces.

To conclude, integration by parts (also known as Schwinger–Dyson equations in this context) shows
that Z(Λ) satisfies the Virasoro constraints (2.69), upon identification h̄ = 2/N and the times with
the normalised traces of Λ:

td =
tr(Λ−2d−1)

(2d − 1)!!
, d ≥ 0 . (2.79)

It is worth mentioning that, through resurgence techniques (see [ABS19] or I. Aniceto’s and
M. Mariño’s lecture notes [Ani; Mar]), one can compute the large genus asymptotic Witten’s
correlators [EGGGL], see figure 7:

⟨τd1 · · · τdn⟩g

n

∏
i=1

(2di + 1)!! =
2n−1

2π

Γ(2g − 2 + n)
( 2

3 )
2g−2+n

(
1 + O(g−1)

)
. (2.80)

The subleading asymptotics are also accessible using resurgence. The first proof of this result
uses combinatorial and probabilistic arguments, and is due to A. Aggarwal [Agg21]. Notice
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the Stokes constant S = i and the instanton action A = 2
3 , corresponding to those of the Airy

function. This is of course not a coincidence!
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3. Cohomological field theories

The Virasoro constraints for Witten’s correlators provide a recursive computation of all ψ-class
intersection numbers. The main geometric property underpinning the constraints is the recur-
sive nature of Mg,n. By looking at Witten’s correlators as the intersections of the unit with
ψ-classes, we can rephrase the recursive structure purely in cohomological terms: the unit
1g,n ∈ H0(Mg,n, Q) is stable under pullback by all tautological maps, that is

ρ∗1g,n = 1g−1,n+1 , ρ : Mg−1,n+2 →Mg,n , (3.1)

σ∗1g,n = 1g1,1+|I1| ⊗ 1g2,1+|I2| , σ : Mg1,1+|I1| ×Mg2,1+|I2| →Mg,n , (3.2)

π∗1g,n = 1g,n+1 , π : Mg,n+1 →Mg,n . (3.3)

The first two equations can be interpreted as a cohomological version of the locality axiom in
2D topological field theories (TQFT for short). Taking inspiration from TQFTs, we define their
cohomological version based on the cohomology ofMg,n. The original definition, due to M. Kont-
sevich and Y. Manin in the mid ’90s [KM94], was the first attempt at axiomatising topological
string theory and has deep connections with the seminal work of B. Dubrovin on the geometry
of 2D TQFTs [Dub96].

3.1. Axioms. Fix once and for all a finite-dimensional Q-vector space V, called the phase space,
equipped with a non-degenerate pairing η : V × V → Q. For convenience, we work in a fixed
basis (e1, . . . , er) of V. We denote by (ηµ,ν) the matrix elements of the pairing, and by (ηµ,ν) the
inverse matrix.

Definition 3.1. A cohomological field theory on (V, η) consists of a collection Ω = (Ωg,n)2g−2+n>0

of linear maps

Ωg,n : V⊗n −→ H2•(Mg,n, Q) , Ωg,n(eµ1 ⊗ · · · ⊗ eµn) = Ωg;µ1,...,µn , (3.4)

satisfying the following axioms.

i) Symmetry. Each Ωg,n is Sn-invariant, where the action of the symmetric group Sn permutes
simultaneously the marked points ofMg,n and the copies of V⊗n.

ii) Glueing. Considering the glueing maps

ρ : Mg−1,n+2 −→Mg,n ,

σ : Mg1,1+|I1| ×Mg2,1+|I2| −→Mg,n , g1 + g2 = g, I1 ⊔ I2 = { 1, . . . , n } ,
(3.5)

we require

ρ∗Ωg;µ1,...,µn = ηα,β Ωg−1;α,β,µ1,...,µn ,

σ∗Ωg;µ1,...,µn = ηα,β Ωg1;α,µI1
⊗ Ωg2;β,µI2

.
(3.6)

If the vector space comes with a distinguished non-zero element, which can be assumed without
loss of generality to be e1, we can also ask for a third axiom.
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iii) Unit. Considering the forgetful map

π : Mg,n+1 −→Mg,n , (3.7)

we require

π∗Ωg;µ1,...,µn = Ωg;µ1,...,µn,1 and Ω0;µ,ν,1 = ηµ,ν . (3.8)

In this case, Ω is called a cohomological field theory with unit; the distinguished element is called
unit or vacuum.

Pictorially, the axioms can be illustrated as follows.

µ1

··
·

µn

Ωg

ρ∗7−→
µ1

··
·

µn

Ωg−1

α

β

η (3.9)

µ1

··
·

µn

Ωg

σ∗
7−→ ··

·µI1 ··
· µI2Ωg1 Ωg2

η

α β
(3.10)

µ1

··
·

µn

Ωg

π∗
7−→

µ1

··
·

µn

1Ωg (3.11)

µ

ν

1Ω0 =
µ

ν

(3.12)

A cohomological field theory (CohFT for short) determines a product ⋆ on V, called the quantum
product:

eµ ⋆ eν = Ω0;µ,ν,α ηα,β eβ . (3.13)

Commutativity and associativity of ⋆ follow from (i) and (ii) respectively. If the CohFT comes
with a unit, the quantum product is unital, with e1 ∈ V being the identity by (iii).

Exercise 3.1. Prove that (V, η, ⋆) forms a Frobenius algebra, that is, it satisfies

η(v1 ⋆ v2, v3) = η(v1, v2 ⋆ v3) . (3.14)

A Frobenius algebra (with unit e) is equivalent to a 2D topological field theory Z via the following
assignments: Z(S1) = V for the Hilbert space of states on the circle and

Z
( )

= η : V ⊗ V → Q ,

Z
( )

= ⋆ : V ⊗ V → V ,

Z
( )

= e : Q → V ,

(3.15)

for the morphisms. The partition function Z(Σg,n,m) of any genus g surface connecting n initial states to
m final states can be reconstructed from the above values using the TFT properties.
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Associated to any CohFT Ω, we also have a collection of rational numbers called CohFT correlators
(or ancestor invariants), defined as〈

τµ1,d1 · · · τµn,dn

〉Ω
g =

∫
Mg,n

Ωg;µ1,...,µn

n

∏
i=1

ψdi
i . (3.16)

Notice that, for degree reasons, ∑n
i=1 di ≤ 3g − 3 + n.

Example 3.2. Here are some examples of CohFTs in one dimension. Let us take V = Q.e1 and
η(e1, e1) = 1. In this case, we use the simpler notation Ωg,n for Ωg,n(e⊗n

1 ) = Ωg;1,...,1.

• Setting Ωg,n = 1g,n, the unit element in cohomology, we get a CohFT with unit e1 concentrated
in degree zero. It is called the trivial CohFT, discussed at the beginning of this section. The as-
sociated correlators satisfy the Virasoro constraints (2.69), equivalent to topological recursion
on the Airy spectral curve 1

2 y2 − x = 0.
• The class Ωg,n = exp(2π2κ1) defines a CohFT, sometimes called the Weil–Petersson CohFT due

to its connection with hyperbolic geometry and JT gravity (cf. [Joh; Tur]). It is not a CohFT
with unit. The associated correlators satisfy the Virasoro constraints (a dilaton-shifted version
(2.69)), equivalent to topological recursion on the sine spectral curve (see exercise 3.2).

• The Hodge class Ωg,n = Λ(u) = ∑
g
k=0 λk uk defines a 1-parameter family of CohFTs with unit

e1. It arises as a vertex term in the localisation formula for the topological string amplitudes
of P1. A generalisation is provided by a product of Hodge classes:

Ωg,n =
D

∏
m=1

Λ(um) , (3.17)

which arises as a vertex term in the localisation formula for the topological string amplitudes
of a D-dimensional spacetime. A particularly nice case is that of D = 3 and the parameters
(u1, u2, u3) subjected to the constraint

1
u1

+
1
u2

+
1
u3

= 0 . (3.18)

In the context of the localisation formulas, the constraint is the local Calabi–Yau condition
[MV02; LLZ03; OP04] (cf. [Liu]). The connection to Virasoro constraints/topological recursion
is known only for D = 1 and D = 3 with the Calabi–Yau condition (see exercise 3.4).

• In [Nor23], Norbury defines a CohFT, denoted as Θg,n ∈ H2(2g−2+n)(Mg,n, Q) and know as
Θ-class, that satisfies a different version of the unit axiom, namely

ψn+1 · π∗Θg,n = Θg,n+1 . (3.19)

It appears in super JT gravity in relation to the fermionic part of the Weil–Petersson vol-
umes [SW20]. Norbury conjectured that the associated partition function is the so-called
Brézin–Gross–Witten tau-function of the KdV hierarchy [BG80; GW80], now proved in [CGG].
Equivalently, it satisfies Virasoro constraints equivalent to topological recursion on the Bessel
spectral curve 1

2 y2x − 1 = 0.

Here are some higher-dimensional CohFTs appearing in the literature.



30 A. GIACCHETTO AND D. LEWAŃSKI

• In [Wit92], Witten studied a generalisation of his original work on 2D quantum gravity by
considering a Wess–Zumino–Witten at level k, conveniently re-parametrised as k = r − 2.
Such a theory defines a CohFT of dimension r − 1, called the Witten r-spin class, whose basic
components are described as follows. Let V =

⊕r−1
µ=1 Q.eµ with pairing η(eµ, eν) = δµ+ν,r and

unit e1. The Witten r-spin class is a CohFT

Wr
g;µ1,...,µn

∈ H2Dr
g;µ(Mg,n, Q) (3.20)

of pure complex degree

Dr
g;µ =

(r − 2)(g − 1)− n + ∑n
i=1 µi

r
. (3.21)

If Dr
g;µ is not an integer, the corresponding Witten class vanishes. The case r = 2 gives the

trivial cohomological field theory: W2
g;1,...,1 = 1g,n. In genus 0, the construction was first car-

ried out by Witten [Wit93] using r-spin structures. The construction of Witten’s class in higher
genera was first obtained by Polishchuk and Vaintrob [PV00]. The associated partition func-
tion is an r-KdV tau function [FSZ10] and it satisfies W-constraints equivalent to topological
recursion on the r-Airy spectral curve 1

r yr − x = 0.
In [PPZ15] it was shown that all know relations in the so-called tautological ring ofMg,n (the
minimal subalgebra of the cohomology ofMg,n stable under pushforwards and pullbacks by
tautological maps) are deduced from the Witten r-spin class.

• In [CGG], the authors introduced an r-spin version of the Θ-class, denoted Θr
g,n and satis-

fying properties analogous to those satisfied by Witten’s class. It was proved to satisfy W-
constraints, equivalent to the topological recursion on the r-Bessel spectral curve 1

r yrx− 1 = 0.
• In [Chi08], Chiodo defined a generalisation of the Hodge class, called Ω-class, which depends

on two integers r ≥ 1 and s ∈ Z. Let V =
⊕r

µ=1 Q.eµ with pairing η(eµ, eν) =
1
r δµ+ν≡0 (mod r).

The Ω-class is a CohFT of mixed cohomological degree:

Ωr,s
g;µ1,...,µn

∈ H2•(Mg,n, Q) . (3.22)

It is defined as the total Chern class of a (virtual) vector bundle over the moduli space of
Riemann surfaces. The case r = s = 1 retrieves the Hodge class. The cases r ≥ 2 and s = ±1
are related to the Witten and Theta r-spin classes respectively.

• Let G be a complex, simple, simply-connected Lie group with Lie algebra g. Fix an integer
ℓ > 0 and define V to be the Q-vector space spanned by irreducible representations eµ of
g at level ℓ. Set η(eµ, eν) = δµ,ν⋆ , where ν⋆ denotes the dual representation, and let e1 be
the vector associated with the trivial representation. The Verlinde bundle is the vector bundle
Vg,ℓ

g;µ1,...,µn →Mg,n whose fibres over a smooth Riemann surface are the spaces of non-abelian
theta functions. The Chern characters of the Verlinde bundle

Vg,ℓ
g;µ1,...,µn

:= ch(Vg,ℓ
g;µ1,...,µn

) ∈ H2•(Mg,n, Q) (3.23)

form a CohFT with unit [MOPPZ17]. The glueing axiom is a consequence of the fusion rules,
while the unit axiom is the propagation of vacua.
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• Topological string amplitudes on a fixed target Kähler spacetime (X, ω) are precisely the CohFT
correlators of a CohFT with underlying phase space the graded vector space

V =
⊕

β∈H2(X,Z)

H•(X, Z) · q−
∫

β ω , η(γ1, γ2) =
∫

X
γ1 ⌢ γ2 . (3.24)

Notice that here V is infinite-dimensional, but graded by H2(X, Z) with finite-dimensional
pieces H•(X, Z). The unit in cohomology 1 ∈ H0(X, Z) is the unit for the associated CohFT.
This was the motivating example for the axiomatic definition of CohFTs [KM94]. See [BF97]
for a formal treatment of topological string amplitudes in algebraic geometry.

3.2. Givental’s action. We have already seen howMg,n exhibits a recursive boundary structure.
A natural question arises: can we exploit such a recursive structure to define/compute CohFTs?
The answer is affirmative, and finds its roots in A. Givental’s work [Giv01a; Giv01b] on localisa-
tion computations in topological string theory [GP99]. Concretely, Givental defined two actions
on CohFTs, the rotation and translation actions.

3.2.1. Rotation. For a fixed (g, n), we have a list of all possible stable graphs parametrising the
boundary ofMg,n. If we are given a CohFT Ω on (V, η), it is natural to decorate all vertices with
cohomology classes provided by Ω to obtain a cohomology class onMΓ. For instance:

2
ν1

ν2

α

β

⇝ Ω2;ν1,ν2,α,β

In order to produce a cohomology class on Mg,n, we should contract all indices at the edges
with a cohomology-valued matrix Eνh,νh′ (a priori arbitrary), the indices at the leaves with a
cohomology-valued matrix Lνi

µi (a priori arbitrary), and pushforward the result via the glueing
map ξΓ. In the above example, we would get

Ω2;ν1,ν2,α,β Eα,β Lν1
µ1

Lν2
µ2

, (3.25)

where µ denotes a fixed decorations at the leaf (i.e. the marked point).

Dividing by the natural automorphism factor and summing over all possible stable graphs, we
obtain an expression of the form

∑
Γ type (g,n)

1
|Aut(Γ)| ξΓ,∗

(
∏

v∈V(Γ)
Ωg(v);(νh)h⇝v

)(
∏

e=(h,h′)∈E(Γ)
Eνh,µh′

)(
n

∏
i=1

Lνi
µi

)
. (3.26)

Here h⇝ v denotes any half-edge h incident to the vertex v.

The natural question is: when is the collection of cohomology classes resulting from (3.26) form-
ing a CohFT? It turns out that (3.26) is too naive: the matrices Eµ,ν and Lν

µ cannot be arbitrary, but
should involve specific combinations ψ-classes. This condition is captured by a single element
called the rotation matrix.



32 A. GIACCHETTO AND D. LEWAŃSKI

A rotation matrix on (V, η) is an End(V)-valued power series that is the identity in degree 0 and
satisfying the symplectic condition with respect to η:

Rν
µ(u) = δν

µ + ∑
k≥1

(Rk)
ν
µ uk ∈ QJuK , Rµ

α(u) ηα,β Rν
β(−u) = ηµ,ν . (3.27)

For a given rotation matrix, define the edge decoration as the following V⊗2-valued power series
in two variables3:

Eµ,ν(u, v) =
ηµ,ν − Rµ

α(u) ηα,β Rν
β(v)

u + v
∈ QJu, vK. (3.28)

The symplectic condition guarantees that Eµ,ν(u, v) is regular along u+ v = 0. We set Eµ,ν(u, v) =
∑k,ℓ≥0 Eµ,ν

k,ℓ ukvℓ.

Definition 3.3. Consider a CohFT Ω on (V, η) together with a rotation matrix R. We define a
new collection of cohomology-valued linear maps

RΩg,n : V⊗n −→ H2•(Mg,n, Q) (3.29)

as follows. For each stable graph Γ of type (g, n), define a contribution through the following
construction:

• place Ωg(v);(νh)h⇝v
at each vertex v of Γ, with arbitrary decorations νh at the half-edges con-

nected to v;
• place Rνi

µi(ψi) at the i-th leaf of Γ,
• place Eνh,νh′ (ψh, ψh′) at every edge e = (h, h′) of Γ,
• contract all the indices.

In other words, we get a cohomology class:

ContΓ;µ1 ...,µn =

(
∏

v∈V(Γ)
Ωg(v);(νh)h⇝v

)(
∏

e=(h,h′)∈E(Γ)
Eνh,νh′ (ψh, ψh′)

)(
n

∏
i=1

Rνi
µi
(ψi)

)
. (3.30)

Although the expressions Eνh,νh′ (ψh, ψh′) and Rνi
µi(ψi) have a priori infinitely many terms, they

terminate due to cohomological degree reasons.

Define RΩg;µ1,...,µn to be the sum of contributions of all stable graphs, after pushforward to the
moduli space weighted by automorphism factors:

RΩg;µ1,...,µn = ∑
Γ type (g,n)

1
|Aut(Γ)| ξΓ,∗ContΓ;µ1 ...,µn . (3.31)

Let us analyse some examples in low topologies.

• RΩ0,3. There is a single stable graph of type (0, 3), and for dimensional reasons, the decoration
R(ψi) at the leaves is simply the identity. Thus, we find

RΩ0,3 = Ω0,3. (3.32)

3Beware that several authors use R−1 instead of R. Here we follow Givental’s convention.
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• RΩ0,4. The table graphs of type (0, 4) are

Γ0 =
1

2 3

4

0 Γij|kℓ =
i

j

k

ℓ

0 0 (3.33)

for ij|kℓ ∈ { 12 | 34, 13|24, 14|23 }. The contribution of the stable graph Γ0 is given by

ContΓ0;µ1,µ2,µ3,µ4 = Ω0;µ1,µ2,µ3,µ4 + Ω0;α,µ2,µ3,µ4(R1)
α
µ1

ψ1 + Ω0;α,µ1,µ3,µ4(R1)
α
µ2

ψ2

+ Ω0;α,µ1,µ2,µ4(R1)
α
µ3

ψ3 + Ω0;α,µ1,µ2,µ3(R1)
α
µ4

ψ4 .
(3.34)

The contribution of the stable graph Γij|kℓ is given by

ContΓij|kl ;µ1,µ2,µ3,µ4 = Ω0;µi ,µj,α Eα,β
0,0 Ω0;β,µk ,µℓ

. (3.35)

It can be proved that ξΓij|kℓ,∗1 = [Γij|kℓ] = κ1, so that we find

RΩ0;µ1,µ2,µ3,µ4 = Ω0;µ1,µ2,µ3,µ4 + Ω0;α,µ2,µ3,µ4(R1)
α
µ1

ψ1 + Ω0;α,µ1,µ3,µ4(R1)
α
µ2

ψ2

+ Ω0;α,µ1,µ2,µ4(R1)
α
µ3

ψ3 + Ω0;α,µ1,µ2,µ3(R1)
α
µ4

ψ4

+

∑
ij|kℓ

Ω0;µi ,µj,α Eα,β
0,0 Ω0;β,µk ,µℓ

 κ1

(3.36)

• RΩ1,1. There are two stable graphs of type (1, 1):

Γ = 1 1 Γ′ = 1 0 . (3.37)

The contribution of Γ is

ContΓ;µ = Ω1;µ + Ω1;ν (R1)
ν
µ ψ1 . (3.38)

For one-loop diagram Γ′, we find

ContΓ′;µ = Ω0;µ,α,β Eα,β
0,0 . (3.39)

It can be shown that 1
2 ξΓ′,∗1 = [Γ′] = 12ψ1, so that

RΩ1;µ = Ω1;µ +
(

Ω1;ν (R1)
ν
µ + 12 Ω0;µ,α,β Eα,β

0,0

)
ψ1. (3.40)

The main point of this construction is that the resulting collection of cohomology-valued maps
RΩ forms a CohFT.

Proposition 3.4. The collection of cohomology-valued linear maps RΩ = (RΩg,n)2g−2+n>0 forms a
CohFT on (V, η). Moreover, rotations form a right group action.

3.2.2. Translation. The rotation action exploits the glueing map by attaching CohFTs through a
sort of 2-point correlator, the rotation matrix. There is one more tautological map we can take into
account: the forgetful map. Diagrammatically, the forgetful map prunes a leaf of the diagram,
which can be decorated (before forgetting it) with a sort of 1-point correlator. As in the case of
the rotation, the correct approach is to decorate the forgotten leaf with a specific combination of
ψ-classes. This is taken into account by the translation.
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A translation is a V-valued power series vanishing in degrees 0 and 1:

Tµ(u) = ∑
d≥1

(Td)
µud+1 ∈ u2QJuK . (3.41)

Definition 3.5. Consider a CohFT Ω on (V, η), together with a translation T. We define a collec-
tion of cohomology-valued linear maps

TΩg,n : V⊗n → H2•(Mg,n, Q) (3.42)

by setting

TΩg;µ1,...,µn = ∑
m≥0

1
m!

πm,∗Ωg;µ1,...,µn,ν1,...,νm Tν1(ψn+1) · · · Tνm(ψn+m) . (3.43)

Here πm : Mg,n+m → Mg,n is the map forgetting the last m marked points. Notice that the
vanishing of T in degree 0 and 1 ensures that the above sum is actually finite.

Proposition 3.6. The collection of cohomology-valued linear maps TΩ = (TΩg,n)2g−2+n>0 forms a
CohFT on (V, η). Moreover, translations form an abelian group action.

One can also check the composition law for a combination of rotation and translation. The result
is parallel to the action of rotation and translation on the plane, hence the name.

3.2.3. Examples and Teleman’s theorem. Several CohFTs are expressed through Givental’s action.
We present here the cases of the Weil–Petersson class and the Hodge class.

Exercise 3.2. Prove that exp(2π2κ1) is the CohFT obtained from the trivial one under the action of the
following translation:

T(u) = ∑
k≥1

(−2π2)k

k!
uk+1 = u

(
1 − e−2π2u) . (3.44)

Theorem 3.7 (Mumford’s formula). The Hodge class Λ(t) is the CohFT obtained from the trivial one
under the action of the following translation and rotation (in this order) [Mum83]:

R(u) = exp

(
− ∑

m≥1

Bm+1

m(m + 1)
(tu)m

)
,

T(u) = u
(
1 − R(u)

)
,

(3.45)

where Bm is the m-th Bernoulli number. After re-summing the stable graphs sum, one deduces that

Λ(t) = exp

(
∑

m≥1

Bm+1

m(m + 1)
tm
(

κm −
n

∑
i=1

ψm
i + δm

))
, (3.46)

where δm = 1
2 j∗
(
∑k+ℓ=m−1 ψk(ψ′)ℓ

)
, and j is the inclusion of all codimension-one boundary strata (i.e.

stable graphs with a single edge). The classes ψ and ψ′ are the two ψ-classes at the nodes.

Givental’s action is extremely powerful for two reasons. First, as we will see shortly, it gives
a recursive way of computing CohFT correlators. Secondly, it (might) produce relations in co-
homology! Take for instance Mumford’s formula. One knows from geometric reasons that the
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Hodge class Λ(t) vanishes in degree d > g (it is the Chern polynomial of a rank g bundle).
On the other hand, Mumford’s formula for Λ(t) gives a certain class in any degree. Denoting
by H d

g,n the component of Mumford’s formula in complex degree d (i.e. the coefficient of td in
the right-hand side of equation (3.46)), we obtain the following tautological relations: for every
d > g, H d

g,n = 0 in H2d(Mg,n, Q). The first non-trivial example of such tautological relations is
the degree 1 relation in genus 0:

H 1
0,n = κ1 −

n

∑
i=1

ψi + δ1 = 0 in H2(M0,n, Q) . (3.47)

Pixton–Pandharipande–Zvonkine [PPZ15] exploited this argument in the case of Witten 3-spin
class to prove all known relations in cohomology.

Exercise 3.3. Prove, using Mumford’s formula, that Λ(t)Λ(−t) = 1. This is sometimes referred to as
Mumford’s relation. Deduce the relations λ2

g = 0.

Another reason why Givental’s action is extremely valuable is its range of applicability, a result
due to Teleman [Tel12]. Teleman proved that all CohFTs whose underlying quantum product is
semisimple are contained in the orbit of the trivial CohFT under the Givental action. Under an
additional homogeneity condition, he provided an algorithm to explicitly compute the rotation
and the translation matrix.

Theorem 3.8 (Teleman’s classification). Let Ω be a CohFT on (V, η). If Ω is semisimple and homoge-
neous, then the exist explicit R and T such that

Ωg,n = RTwg,n , (3.48)

where wg,n = Ωg,n|H0(Mg,n,Q) is the associated 2D TFT. If Ω is semisimple (but not homogeneous), than
there exist R and T such that the above equation holds, but they are defined up to a diagonal ambiguity.

In other words, Teleman’s theorem classifies all semisimple, homogeneous CohFTs as the orbit
under the Givental action of semisimple 2D TFT. Pretty neat!

3.3. Connection to topological recursion. Givental’s action provides a recursive construction
of CohFTs. As the correlators of the trivial CohFT are computed recursively via topological
recursion, a natural question arises: is it possible to recursively compute all correlators obtained
in the Givental orbit of the trivial CohFT? The answer is affirmative and it beautifully connects
to the theory of topological recursion.

Consider a spectral curve S = (Σ, x, y, B) with r simple ramification points. Choose local coordi-
nates ζµ around a ramification point µ such that x = ζ2

µ + x(µ). Consider the auxiliary functions
ξµ and the associated meromorphic differentials dξµ,k, defined as

ξµ(z) =
∫ z B(w, ·)

dζµ(w)

∣∣∣∣
w=µ

, dξµ,k(z) = d
((

− 1
ζµ

d
dζµ

)k

ξµ(z)
)

. (3.49)
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CohFT Topological recursion

dim(V) # ramification points

trivial CohFT dy
dζ

translation ω0,1

rotation dξ

edge contribution ω0,2

Table 2. The correspondence between CohFT and topological recursion data.

Set tµ = −2 dy(z)
dζµ(z)

∣∣
z=µ

. Define the (r-copies of the trivial) CohFT4 on V =
⊕r

µ=1 C.eµ by setting
η(eµ, eν) = δµ,ν and

wg;µ1,...,µn =
δµ1,...,µn

(tµi)2g−2+n . (3.50)

Define the rotation matrix R and the translation T by setting

Rν
µ(u) = −

√
u

2π

∫
γν

e−
x−x(ν)

2u dξµ , (3.51)

Tµ(u) =

(
u tµ +

1√
2πu

∫
γµ

e−
x−x(µ)

2u ω0,1

)
. (3.52)

Here γµ is the formal steepest descent path for x(z) emanating from the ramification point µ;
locally it can be taken along the real axis in the ζµ-plane. Moreover, the equations are intended as
equalities between formal power series in u, where on the right-hand side we take an asymptotic
expansion as u → 0.

Through the Givental action, we can then define a CohFT

Ωg,n = RTwg,n : V⊗n −→ H2•(Mg,n, C) (3.53)

from the data (w, R, T) through a sum over stable graphs as explained in subsection 3.2. The
connection with the topological recursion correlators is given by the following theorem [Eyn14;
DOSS14].

Theorem 3.9 (CohFT/TR correspondence). Fix a compact spectral curve S = (Σ, x, y, ω0,2) and define
the CohFT Ω as in (3.53). Then the topological recursion correlators compute the CohFT correlators:

ωg,n(z1, . . . , zn) =
〈
τµ1,d1 · · · τµn,dn

〉Ω
g dξµ1,d1(z1) · · ·dξµn,dn(zn) . (3.54)

Conversely, if we are given a CohFT in the Givental orbit of a semisimple 2D TFT, we can define a (local)
spectral curve via equations (3.51) and (3.52) that computes the correlators as in equation (3.54).

In a nutshell, the correspondence between CohFTs and topological recursion can be summarised
as in table 2.

4In the remaining part of this section, we work over C rather than Q.
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Exercise 3.4. Show that the CohFT associated with the following spectral curve(
P1, x(z) = − f log(z)− log(1 − z), y(z) = − log(z), B(z1, z2) =

dz1dz2

(z1 − z2)2

)
. (3.55)

is the triple Hodge Λ(1)Λ( f )Λ(− f − 1). This is the CohFT underlying the (framed) topological vertex
[MV02; LLZ03; OP04], and the topological recursion formula for the triple Hodge class is nothing other
than the BKMP remodelling conjecture for the vertex. The large framing limit recovers the so-called
Lambert curve from [BM08] that computes Hurwitz numbers.

� Hint. Recall the integral representation of the Euler Beta function

B(p, q) =
Γ(p)Γ(q)
Γ(p + q)

=
∫ 1

0
tp−1(1 − t)q−1 dt (3.56)

and the asymptotic expansion of the Euler Gamma function

e
1
v
√

2π
(−v)

1
v +a+ 1

2

Γ(a − v−1)
∼ exp

(
∞

∑
m=1

Bm+1(a)
m(m + 1)

vm

)
. (3.57)

Here Bm+1(a) are Bernoulli polynomials, and specialise to Bernoulli numbers at both a = 0 and a = 1: Bm+1(0) =

Bm+1(1) = Bm+1.
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4. What’s next?

4.1. Moduli of hyperbolic surfaces. In JT gravity, the path integral of the theory is over the
space of hyperbolic metrics (rather than the space of complex structures). In other words, the
‘correct’ moduli space is that of hyperbolic structures:

Mhyp
g,n (L1, . . . , Ln) =

 X

∣∣∣∣∣∣
X is a hyperbolic surface of genus g
with n labelled geodesics boundaries

of lengths L1, . . . , Ln


/

∼ (4.1)

where X ∼ X′ if and only if there exists an isometry from X to X′ preserving the labelling of the
boundary components.

How is that related to the moduli space of Riemann surfaces? A non-trivial result, which is a
consequence of the Riemann uniformisation theorem, is that Mhyp

g,n (L) is homeomorphic to the
moduli space of Riemann surfaces discussed in section 2.

Theorem 4.1. The spaceMhyp
g,n (L) is a smooth real orbifold of dimension 2(3g − 3+ n). Moreover, for all

L ∈ Rn
+, it is homeomorphic (as a smooth real orbifold) to the moduli space of smooth Riemann surfaces:

Mhyp
g,n (L) ∼=Mg,n . (4.2)

For any fixed L ∈ Rn
+, the moduli space Mhyp

g,n (L) comes equipped with a natural symplectic
form, called the Weil–Petersson form and denoted ωWP. In particular, we can define the volumes

VWP
g,n (L) =

∫
Mhyp

g,n (L)

ω
3g−3+n
WP

(3g − 3 + n)!
. (4.3)

A toy example of such a structure is the fibration over R+ ∋ L by spheres S2(L) of radius L.
Although all fibres are homeomorphic to P1, each fibre carries a specific symplectic geometry
that depends on the point L on the base. For instance, the area of S2(L) is 4πL2. However, we can
transfer the particular geometry to P1 and get an L-dependent form on P1. For instance, under
the isomorphism S2(L) ∼= P1 provided by stereographic projection, we find that the symplectic
form on S2(L) is mapped to the following polynomial in L:

4L2 ℜ dz dz̄
(1 + |z|2)2 . (4.4)

The analogous result for the Weil–Petersson form and the isomorphism Mhyp
g,n (L) ∼= Mg,n is a

result due to Wolpert (for the case Li = 0) and Mirzakhani (for the general case) [Wol85; Mir07b].

Theorem 4.2. Under the homeomorphismMhyp
g,n (L) ∼=Mg,n, the Weil–Petersson form extends as a closed

form toMg,n and defines the cohomology class

2π2κ1 +
1
2

n

∑
i=1

L2
i ψi . (4.5)
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∂mΣ

γ

γ

γ′

γ

γ′

Figure 8. The geodesic αp (in red) and some of its possible behaviour, together
with the simple closed curve(s) it determines (in green). On the left, the arc αp

intersects the boundary component ∂mΣ (bm-type), and it determines a single sim-
ple closed curve γ. In the two other cases, αp intersect ∂1Σ and itself respectively
(c-type), determining two simple closed curves (γ, γ′).

An immediate consequence of the above result is that the Weil–Petersson volumes are finite (this
was not obvious because Mhyp

g,n (L) is not compact) and is a symmetric polynomial in boundary
lengths squared whose coefficients are intersection numbers involving ψ-classes and exp(2π2κ1):

VWP
g,n (L) = ∑

d1,...,dn≥0
d1+···+dn≤3g−3+n

∫
Mg,n

e2π2κ1
n

∏
i=1

ψdi
i

L2di
i

2di di!
. (4.6)

These intersection numbers are precisely in the form of CohFT correlators, and as such can be
computed by topological recursion!

Exercise 4.1. Consider the spectral curve(
P1, x(z) =

z2

2
, y(z) =

sin(2πz)
2π

, ω0,2(z1, z2) =
dz1dz2

(z1 − z2)2

)
. (4.7)

Using the CohFT/topological recursion correspondence (theorem 3.9) and the expression for the Weil–
Petersson form exp(2π2κ1) in terms of Givental’s action (exercise 3.2), show that the topological recursion
correlators associated with the above spectral curve compute the differential of the Laplace transform of the
Weil–Petersson volumes:

ωg,n(z1, . . . , zn) = dz1 · · ·dzn

(
n

∏
i=1

∫ ∞

0
dLi e−zi Li

)
VWP

g,n (L1, . . . , Ln) . (4.8)

A statement equivalent to the topological recursion (for the volumes rather than their Laplace
transform) was proved by M. Mirzakhani in a remarkable series of papers [Mir07a; Mir07b]. Her
approach is completely geometric (rather than algebraic) and is base on the following simple
idea due to McShane [McS98].

Consider a fixed hyperbolic surface (Σ, h) with geodesic boundaries. Pick a random (with respect
to the hyperbolic measure) point p ∈ ∂1Σ and consider the geodesic αp starting at p orthogonally
to ∂1Σ. Then one of the following mutually excluding situations must arise (cf. figure 8).
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a) The geodesic αp never intersects itself or a boundary component (it spirals indefinitely).
bm) The geodesic αp intersects ∂mΣ for some m ∈ { 2, . . . , n }, without intersecting itself.

c) The geodesic αp intersects ∂1Σ or it intersects itself.

On the one hand, the probability of finding (a) is zero by a result of Birman–Series. Thus, we
simply have that 1 (the total probability) is expressed as the sum of finding (bm) or (c):

1 =
n

∑
m=2

Pbm + Pc . (4.9)

In order to compute such probabilities, Mirzakhani proceeded as follows. Consider the union of
∂1Σ, the geodesic αp from p to the intersection point and, only in the bn case, ∂mΣ. A sufficiently
small neighbourhood of this embedded graph is a topological pair of pants. By taking geodesic
representatives of the boundary components, we obtain an embedded hyperbolic pair of pants P
whose geodesic boundary is (∂1Σ, ∂mΣ, γ) in the bm-case and (∂1Σ, γ, γ′) in the c-case (see again
figure 8). Mirzakhani computed the probabilities Pbm and Pc as functions of the hyperbolic
lengths of such curves, obtaining the celebrated Mirzakhani identity:

1 =
n

∑
m=2

∑
γ

B
(

L1, Lm, ℓ(γ)
)
+ 1

2 ∑
γ,γ′

C
(

L1, ℓ(γ), ℓ(γ′)
)

, (4.10)

where B and C are the explicit hyperbolic functions

B(L, L′, ℓ) = 1 − 1
L

log

(
cosh( L′

2 ) + cosh( L+ℓ
2 )

cosh( L′
2 ) + cosh( L−ℓ

2 )

)
,

C(L, ℓ, ℓ′) =
2
L

log

(
e

L
2 + e

ℓ+ℓ′
2

e−
L
2 + e

ℓ+ℓ′
2

)
.

(4.11)

Integration of the constant function 1 over the moduli space gives the Weil–Petersson volumes on
the left-hand side, while the right-hand side can be expressed as a specific integration formula
involving volumes of lower complexity thanks to the removal of pairs of pants.

Theorem 4.3 (Mirzakhani’s recursion). The Weil–Petersson volumes are uniquely determined by the
following recursion on 2g − 2 + n > 1

VWP
g,n (L1, . . . , Ln) =

n

∑
m=2

∫ ∞

0
dℓ ℓ B(L1, Lm, ℓ)VWP

g,n−1(ℓ, L2 . . . , L̂m, . . . , Ln)

+
1
2

∫ ∞

0

∫ ∞

0
dℓdℓ′ ℓ ℓ′ C(L1, ℓ, ℓ′)

(
VWP

g−1,n+2(ℓ, ℓ′, L2, . . . , Ln)

+ ∑
g1+g2=g

I1⊔I2={ 2,...,n }

VWP
g1,1+|I1|(ℓ, LI1)VWP

g2,1+|I2|(ℓ
′, LI2)

)

(4.12)

with the conventions VWP
0,1 = VWP

0,2 = 0 and the base cases VWP
0,3 (L1, L2, L3) = 1, VWP

1,1 (L) = L2

48 + π2

12 .
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(g, n) VWP
g,n (L1, . . . , Ln)

(0, 3) 1

(0, 4) 1
2 m(1) + 2π2

(0, 5) 1
8 m(2) +

1
2 m(12) + 3π2m(1) + 10π4

(0, 6) 1
48 m(3) +

3
16 m(2,1) +

3
4 m(13) +

3π2

2 m(2) + 6π2m(12) + 26π4m(1) +
244π6

3

(0, 7) 1
384 m(4) +

1
24 m(3,1) +

3
32 m(22) +

3
8 m(2,12) +

3
2 m(14) +

5π2

12 m(3) +
15π2

12 m(2,1)

+ 15π2m(13) + 20π4m(2) + 80π4m(12) +
910π6

3 m(1) +
2758π8

3

(1, 1) 1
48 m(1) +

π2

12

(1, 2) 1
192 m(2) +

1
96 m(12) +

π2

12 m(1) +
π4

4

(1, 3) 1
1152 m(3) +

1
192 m(2,1) +

1
96 m(13) +

π2

24 m(2) +
π2

8 m(12) +
13π4

24 m(1) +
14π6

9

(1, 4) 1
9216 m(4) +

1
768 m(3,1) +

1
384 m(22) +

1
128 m(2,12) +

1
64 m(14) +

7π2

576 m(3)

+ π2

12 m(2,1) +
π2

4 m(13) +
41π4

96 m(2) +
17π4

12 m(12) +
187π6

36 m(1) +
529π8

36

(2, 1) 1
442368 m(4) +

29π2

138240 m(3) +
139π4

23040 m(2) +
169π6

2880 m(1) +
29π8

192

(2, 2) 1
4423680 m(5) +

1
294912 m(4,1) +

29
2211840 m(3,2) +

11π2

276480 m(4) +
29π2

69120 m(3,1) +
7π2

7680 m(22)

+ 19π4

7680 m(3) +
181π4

11520 m(2,1) +
551π6

8640 m(2) +
7π6

36 m(12) +
1085π8

1728 m(1) +
787π10

480

(3, 1) 1
53508833280 m(7) +

77π2

9555148800 m(6) +
3781π4

2786918400 m(5) +
47209π6

418037760 m(4) +
127189π8

26127360 m(3)

+ 8983379π10

87091200 m(2) +
8497697π12

9331200 m(1) +
9292841π14

4082400

Table 3. A list of Weil–Petersson polynomials VWP
g,n (L) computed via topological

recursion. Here mλ is the monomial symmetric polynomial associated with the
partition λ, evaluated at L2

1, . . . , L2
n.

Topological recursion on the spectral curve given in (4.7) is precisely the Laplace transform of
Mirzakhani’s recursion [EO].

4.2. String theory and moduli of maps. As mentioned in the text, topological string is also
intimately connected to the moduli space of Riemann surfaces. Topological string theory (or, in
mathematical terms, Gromov–Witten theory) aims at computing worldsheets of the strings in a
fixed target spacetime X as parametrised Riemann surfaces, that is maps

f : (Σ, p1, . . . , pn) −→ X . (4.13)

Here p1, . . . , pn are marked points on Σ and can be thought of as the initial/final states of the
worldsheet Σ. The path integral of the theory is then an integral over the moduli space of such
maps:

Mg,n(X, β) =

{
(Σ, p1, . . . , pn, f )

∣∣∣∣ f : (Σ, p1, . . . , pn) → X
f∗[Σ] = β

}/
∼ , (4.14)

where β ∈ H2(X, Z) is a fixed class (called the degree). The proper definition ofMg,n(X, β) and
its compactification is a very delicate mathematical problem (much more complicated than the
moduli space of Riemann surfaces). The computation of the associated correlators is even more
complicated.
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Witten’s conjecture can be seen as the tip of the iceberg of such a theory: it corresponds to the case
of X = { ∗ }, a zero-dimensional target. Eguchi, Hori, and Xiong [EHX97] extended the Virasoro
constraints for the point and conjectured that the partition function of every target obeys the
Virasoro conditions. In a remarkable series of papers [OP06a; OP06b; OP06c], Okounkov and
Pandharipande gave a complete solution in the one-dimensional case, proving the conjecture
of Eguchi–Hori–Xiong. Apart from the theory of a point and that of complex curves, Virasoro
constraints have also been shown to hold for special classes of targets (of arbitrary dimension),
namely:

• for toric Fano manifolds and manifolds satisfying a semisimplicity assumption, as shown by
Givental–Teleman [Giv01a; Tel12],

• even more explicitly for toric Calabi–Yau 3-folds following the Bouchard–Klemm–Mariño–
Pasquetti “remodelling conjecture” [BKMP09], now a theorem [EO15; FLZ20].
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