
MODULI SPACES OF RIEMANN SURFACES – EXERCISES

ALESSANDRO GIACCHETTO & DANILO LEWAŃSKI

Lecture 1: moduli spaces of Riemann surfaces and their stratification

Exercise 1.

(1) Consider a genus 0 curve with three marked points (P1, p1, p2, p3). Find the (unique) g ∈ PSL(2, C)

that maps (P1, p1, p2, p3) to (P1, 0, 1, ∞).
(2) Consider a genus 0 curve with four marked points (P1, p1, p2, p3, p4). The element g ∈ PSL(2, C)

found in part (1) maps (P1, p1, p2, p3, p4) to (P1, 0, 1, ∞, t). Find an expression for t as a function of
p1, p2, p3, p4.

Exercise 2. For the reader familiar with Riemann–Roch and Riemann–Hurwitz, convince yourself that the
complex dimension ofMg =Mg,0 is 3g − 3. To this end, consider the moduli space of pairs (Σ, f ), where
Σ is a genus g Riemann surface and f is a degree d holomorphic map from Σ to P1 (i.e. a meromorphic
function on X). Such a space is sometimes referred to as a Hurwitz space, denoted Hg,d. Compute its
dimension in two different ways.

• The dimension of Hg,d equals the dimension ofMg, counting the “number of deformation parameters”
of the Riemann surface Σ, plus the “number of deformation parameters” of the function f . Compute
the latter via Riemann–Roch.

• Directly compute the dimension of Hg,d using Riemann–Hurwitz.

Conclude that dimMg = 3g − 3.

Exercise 3. The Euler characteristic of an orbifold X is defined as

χ(X) = ∑
G

χ(XG)

|G| , (0.1)

where XG is the locus of points with automorphism group G. Prove that χ(M1,1) = − 1
12 .

Exercise 4.

(1) List all strata ofM2,1.
(2) Consider a stable graph Γ of type (g, n). Show that the dimension of the stratum is dim(MΓ) =

dim(Mg,n)− |EΓ|.
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Lecture 2: Witten’s conjecture

Exercise 5. Employ the geometric string and dilaton equations, together with the projection formula and
the expression [Γ] = 1

|Aut(Γ)|ξΓ,∗1 for the Poincaré dual of boundary strata, to prove the following equations
satisfied by Witten’s correlators.

• String equation. Integrals overMg,n+1 with no ψn+1 are reduced to integrals overMg,n:

∫
Mg,n+1

ψd1
1 · · ·ψdn

n =
n

∑
i=1

∫
Mg,n

(
∏
j ̸=i

ψdi
i

)
ψdi−1

i . (0.2)

In Witten’s notation, the string equation amounts to the removal of a τ0:

⟨τd1 · · · τdn τ0⟩g =
n

∑
i=1

⟨τd1 · · · τdi−1 · · · τdn⟩g . (0.3)

� Hints.
– By looking at cohomological degrees, what can you say about

∫
Mg,n+1

π∗α for α ∈ H2(3g−3+n)(Mg,n, Q)?

– Let Di =
[ 1

··
·

n

i

n + 1
g 0

]
. Interpreting it as a Poincaré dual, one can see that Di · Dj = 0 for all i ̸= j.

• Dilaton equation. Integrals over Mg,n+1 with a single power of ψn+1 are reduced to integrals over
Mg,n: ∫

Mg,n+1

ψd1
1 · · ·ψdn

n ψn+1 = (2g − 2 + n)
∫
Mg,n

ψd1
1 · · ·ψdn

n . (0.4)

In Witten’s notation, the string equation amounts to the removal of a τ1:

⟨τd1 · · · τdn τ1⟩g = (2g − 2 + n) ⟨τd1 · · · τdn⟩g . (0.5)

Exercise 6. Knowing the string equation and the integral
∫
M0,3

1 = ⟨τ3
0 ⟩0 = 1, show that all genus 0,

ψ-class intersection numbers are determined. Can you prove the following closed formula:

⟨τd1 · · · τdn⟩0 =

(
n − 3

d1, . . . , dn

)
, (0.6)

where ( D
d1,...,dn

) = D!
d1!···dn ! is the multinomial coefficient?

Exercise 7. Knowing the string equation, the dilaton equation, and the integral
∫
M1,1

ψ1 = ⟨τ1⟩1 = 1
24 ,

show that all genus 1, ψ-class intersection numbers are determined. Can you prove the following closed
formula:

⟨τd1 · · · τdn⟩1 =
1
24

((
n

d1, . . . , dn

)
− ∑

ϵ1,...,ϵn∈{ 0,1 }

(
n − |ϵ|

d1 − ϵ1, . . . , dn − ϵn

)
(|ϵ| − 2)!

)
, (0.7)

where |ϵ| = ϵ1 + · · ·+ ϵn?

Exercise 8. Prove that ⟨τ1⟩1 = 1
24 using the following facts.

(1) The following identity holds for arbitrary line bundle L: c1(L) =
1
k c1(L

⊗k).
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(2) For an arbitrary line bundle L, we have c1(L) = [Z − P], where Z and P are the divisors of zeros and
poles of a generic meromorphic section of L and [ · ] denotes the Poincaré dual1.

(3) Consider the cotangent line bundle L⊗k
1 →M1,1. There is a canonical identification of the vector space

of holomorphic sections of L⊗k
1 and the vector space of modular forms of weight k.

(4) The following (combination of) Eisenstein series

G4(τ) = ∑
λ∈(Z+τZ)\{ 0 }

1
λ4 ,

G6(τ) = ∑
λ∈(Z+τZ)\{ 0 }

1
λ6 ,

G̃12(τ) =

(
G4(τ)

2ζ(4)

)3

−
(

G6(τ)

2ζ(6)

)2

,

(0.8)

are modular forms of weight 4, 6, and 12 respectively. Besides, they have a unique simple zero at
τ = 1+i

√
3

2 , τ = i, and τ = +i∞ respectively.

Exercise 9. Define the differential operators

L−1 = h̄
∂

∂t0
− h̄2

(
∑
k≥1

tk
∂

∂tk−1
+

t2
0
2

)
, (0.9)

L0 = h̄
∂

∂t1
− h̄2

(
∑
k≥0

2k + 1
3

tk
∂

∂tk
+

1
24

)
. (0.10)

Prove the following:

• The string equation and ⟨τ3
0 ⟩0 are equivalent to the equation L−1 Z = 0.

• The dilaton equation and ⟨τ1⟩1 = 1
24 are equivalent to the equation L0 Z = 0.

Exercise 10. Prove that the collection (Ln)n≥−1 of differential operators defined by equation (0.9), (0.10),
and

Ln = h̄
∂

∂tn+1
− h̄2

∑
k≥0

(2n + 2k + 1)!!
(2n + 3)!!(2k − 1)!!

tk
∂

∂tk+n
+

1
2 ∑

a,b≥0
a+b=n−1

(2a + 1)!!(2b + 1)!!
(2n + 3)!!

∂2

∂ta∂tb


(0.11)

for n ≥ 1 is indeed a representation of the Virasoro algebra: [Lm, Ln] = h̄2(m − n)Lm+n. This, together
with the form (0.11) of the operators, proves that (Ln)n≥−1 form an Airy ideal (see Vincent’s lectures).

1Poincaré duality for orbifolds involves the automorphism group. More precisely, if Z is a sub-orbifold of X with
underlying topological space Ẑ, then [Z] = 1

|G| [Ẑ], where G is the automorphism group of a generic point in Ẑ.
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Exercise 11 (þ). Show that the Virasoro constraints are equivalent to the following topological recur-
sion for Witten’s correlators:

⟨τd1 · · · τdn⟩g =
n

∑
m=2

(2d1 + 2dm − 1)!!
(2d1 + 1)!! (2dm − 1)!!

⟨τd1+dm−1τd2 · · · τ̂dm · · · τdn⟩g

+
1
2 ∑

a+b=d1−2

(2a + 1)!! (2b + 1)!!
(2d1 + 1)!!

(
⟨τaτbτd2 · · · τdn⟩g−1

+ ∑
g1+g2=g

I1⊔I2={ d2,...,dn }

⟨τaτI1⟩g1
⟨τbτI2⟩g2

)
. (0.12)

Prove that the above recursion is equivalent to the Eynard–Orantin topological recursion formula (see
Vincent’s lectures) on the Airy spectral curve (P1, x(z) = z2

2 , y(z) = z, B(z1, z2) =
dz1dz2
(z1−z2)2 ):

ωg,n(z1, . . . , zn) = (−1)n ∑
d1,...,dn≥0

d1+···+dn=3g−3+n

⟨τd1 · · · τdn⟩g

n

∏
i=1

(2di + 1)!!

z2di+2
i

dzi . (0.13)
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Lecture 3: cohomological field theories and topological recursion

Exercise 12. Let (V, η, e, Ω) be a CohFT with unit. Prove that (V, η, e, ⋆) forms a Frobenius algebra, that
is, it satisfies

η(v1 ⋆ v2, v3) = η(v1, v2 ⋆ v3) . (0.14)

A Frobenius algebra is equivalent to a 2D topological field theory Z via the following assignments:
Z(S1) = V for the Hilbert space of states on the circle and

Z

( )
= η : V ⊗ V → Q ,

Z

( )
= e : Q → V ,

Z

( )
= ⋆ : V ⊗ V → V ,

(0.15)

for the morphisms. The partition functionZ(Σg,n,m) of any genus g surfaces connecting n initial states to
m final states can be reconstructed from the above values using the TFT properties.

Exercise 13. Prove that exp(2π2κ1) is the CohFT obtained from the trivial one under the action of the
following translation:

T(u) = ∑
k≥1

(−2π2)k

k!
uk+1 = u

(
1 − e−2π2u) . (0.16)

Exercise 14. Prove, using Mumford’s formula, that Λ(t)Λ(−t) = 1. This is sometimes referred to as
Mumford’s relation. Deduce the relations λ2

g = 0.

Exercise 15 (þ). Show that the CohFT associated to the following spectral curve(
P1, x(z) = − f log(z)− log(1 − z), y(z) = − log(z), B(z1, z2) =

dz1dz2

(z1 − z2)2

)
. (0.17)

is the triple Hodge Λ(1)Λ( f )Λ(− f − 1). This is the CohFT underlying the (framed) topological vertex,
and the topological recursion formula for the triple Hodge class is nothing but the BKMP remodelling
conjecture for the vertex. The large framing limit recovers the so-called Lambert curve computing Hurwitz
numbers.

� Hint. Recall the integral representation of the Euler Beta function

B(p, q) =
Γ(p)Γ(q)
Γ(p + q)

=
∫ 1

0
tp−1(1 − t)q−1 dt (0.18)

and the asymptotic expansion of the Euler Gamma function

e
1
v
√

2π
(−v)

1
v +a+ 1

2

Γ(a − v−1)
∼ exp

(
∞

∑
m=1

Bm+1(a)
m(m + 1)

vm

)
. (0.19)

Here Bm+1(a) are Bernoulli polynomials, and specialise to Bernoulli numbers at both a = 0 and a = 1: Bm+1(0) =

Bm+1(1) = Bm+1.

Exercise 16. Consider the spectral curve(
P1, x(z) =

z2

2
, y(z) =

sin(2πz)
2πz

, B(z1, z2) =
dz1dz2

(z1 − z2)2

)
. (0.20)
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Using the CohFT/topological recursion correspondence and the expression for the Weil–Petersson form
exp(2π2κ1) in terms of Givental’s action (exercise 13), show that the topological recursion correlators as-
sociated to the above spectral curve compute the differential of the Laplace transform of the Weil–Petersson
volumes:

ωg,n(z1, . . . , zn) = dz1 · · ·dzn

(
n

∏
i=1

∫ ∞

0
dLi e−zi Li

)
VWP

g,n (L1, . . . , Ln) . (0.21)
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