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1 Introduction

In lectures by Andrew Neitzke last week we have learned about the
spectrum of BPS states in four-dimensional A = 2 theories, and in par-
ticular those of class S. Nikita Nekrasov, on the other hand, has taught
us about N = 2 partition functions that in some sense count instanton
configurations on a four-dimensional space-time. In particular, he has
introduced the 2-background, and argued that the N' = 2 instanton
partition function Z;* can be computed exactly in this background for
an overlapping, but complementary, class of four-diimensional N = 2
quiver theories.

In these lectures the goal is to combine these two elements, with
the aim of constructing a new partition function that encodes both
the instanton partition function as well as the spectrum of BPS states.
Spectral networks play a central role in this story, and these lectures
owe much to the beautiful works of Gaiotto-Moore-Neitzke. The ap-
proach we take is also closely related to various other perspectives and
results in the literature, such as the topics of non-perturbative topolog-
ical string theory, resurgence, isomonodromic tau functions, analytic
Langlands, Riemann-Hilbert problems, holomorphic Floer theory, etc.
In particular, there is a very close connection to exact WKB analysis, a
topic which Kohei Iwaki will introduce in detail this week.
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The title of "non-perturbative Seiberg-Witten geometry" might be
a little confusing, as you may argue that the A/ = 2 instanton partition
function is already a non-perturbative object in the parameters ¢; of
the (2-background. Yet, I want to argue that it is natural to define a
new A = 2 partition function Z?,, and corresponding Seiberg-Witten
geometry, that depends in a locally constant way on an additional
phase 9, in such a way that it naturally reproduces the instanton parti-
tion function Z{5* at the phase corresponding to the W-bosons in the
theory, as well as non-pertubative versions of the topological string
partition function in an opposite phase.

To make the relation to the exact WKB analysis as clear as possible,
I have decided to start these lectures in two dimensions. We will
thus start with analysing two-dimensional N' = (2,2) theories, with
emphasis on the class of Landau-Ginzburg models. The latter models
are closely related to minimal models, integrable hierarchies of KdV
type, and matrix models, so hopefully this will also make a connection
to the lectures in earlier weeks in this school.

In the first lecture I will introduce families of (so-called massive)
two-dimensional N/ = (2,2) theories and discuss their BPS soliton
spectrum. Just like in four dimensions, we will see that this spectrum is
invariant under small deformations, but may jump across certain walls
in the parameter space C'. In fact, this wall-crossing is described by
the celebrated Cecotti-Vafa wall-crossing formula that Andy alluded
to in his lectures, as giving the inspiration to understanding its four-
dimensional analogue. We will describe how the 2d BPS solitons are
encoded in spectral networks embedded in the parameter space C, and
how to obtain the Cecotto-Vafa formula from this perspective (based
on the works of Gaiotto-Moore-Neitzke).

In the second lecture I will turn on the (2-background in two di-
mensions, depending on a single paramater ¢, and introduce the corre-
sponding A/ = (2, 2) partition function Z;9"**. T will explain in which
sense this partition function encodes BPS vortex configations in two
dimensions. We will see that the (2-background effectively quantizes
the spectral geometry, determining a (generalized) Schrédinger oper-
ator on the parameter space C, for which the vortex partition function
Z33"** is naturally a solution. But, making the connection to exact
WKB analysis, we will see that there is a more general partition func-



tion ZJ, that not only encodes the vortex partition function, but also
encodes the 2d BPS soliton spectrum in a canonical way. This is the
two-dimensional analogue of the four-dimensional case.

In the third lecture I want to turn to four-dimensional N' = 2
theories. I'll summarise some of the main points we have learned in the
lectures by Andy and Nikita, and illustrate how the two-dimensional
N = (2,2) theories we have learned about so far, may be embedded
in these 4d theories as surface defects. I will also review Andy’s
derivation of the four-dimensional wall-crossing formula and point
out the similarity to the Cecotti-Vafa formula. This will bring us to an
important point: a better understanding of the IR line defect vevs X
Here, I will not assume you understood the physics, and define these
vevs from a purely mathematical perspective, called JV-abelianization.

In the fourth lecture I argue that the objects X form an algebra that
should be seen as the four-dimensional version of the chiral algebra in
two dimensions. I will introduce the 1Q-background, also known as
the Nekrasov-Shatashvili background, and argue that this quantizes
the spectrum of the above algebra. I call the resulting geometry the
non-perturbative Seiberg-Witten geometry, and show that it encodes
the instanton partition function Zi%' as well as the four-dimensional
BPS particle spectrum.

If I have time, I will indicate the relation to the TS/ST (topological
strings versus spectral theory) correspondence, developed by Marcos
and his collaborators Grassi, Hatsuda, etc, by introducing a class of
spectral problems that is naturally associated to N = 2 theories of class
S. I will show that their spectral determinants are related in a natural
way to the generalised partition function Z?, at an opposite phase to
that of the W-bosons.

Part 1: 2d QFT’s and exact WKB analysis

In this part we analyse the "non-perturbative" structure of 2d quan-
tum field theories that are invariant under the extended N = (2,2)
supersymmetry algebra. To be self-contained, these notes start with
summarizing some of the basic ingredients that go towards defining
such N' = (2,2) theories. The main text starts with the introduction
of chiral rings and the associated spectral geometry. Inevitably, I have
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forgotten to write down essential argumemts, or even made mistakes
in what I have written down. Please let me know if you spot some-
thing, and I refer you to, for instance, the Mirror Symmetry book or
the more recent papers of Gaiotto, Moore and Witten for many more
details.

Supersymmetry algebra

The (Lorentzian) N = (2,2) algebra has four odd generators )+ and
(the Hermitean conjugates) (), known as the supercharges, which
obey the (non-zero) anti-commutation relations

{Q+,Q.} =H=£P, (1)
[ZMa Qi] - :FQi7 [ZM7 @:I:] - :Fézb

in terms of the Hamiltonian H, the momentum P and the angular
momentum M. Whereas H, P and M are the Noether charges for time
translations 0;, spatial translations d,, and Lorentz rotation t0, — o0,
respectively, the supercharges are the Noether charges of supersym-
metry transformations.

Asis common in supersymmetry algebras, we can introduce central
charges Z and Z (with complex conjugates Z* and Z*) in the following
way

{0+, Q=27 {Q.Q }=7 (2)
{Qe,Q }y=2" {Q_.Q.}=Z.
These commute with all other operators in the algebra.
The N = (2,2) algebra may have an internal R-symmetry U(1) X
U (1), which rotates the supercharges. If we define
U(l)v = dlag(U(l)L X U(I)R), (3)
U(1)4 = anti-diag(U (1), x U(1)g),

known as the vector and the axial R-symmetries, then their generators
Fy and F4 act on the supercharges as

Fv, Q4] = — Q4 [Fa,Q+] = FQx, (4)
[Fv,Q.] =+Q., [Fa, Q] = £Q..



This implies that Z has to be zero when U(1)y is conserved, and Z
has to be zero when U(1) 4 is conserved. We will want to preserve the
U(1)4 symmetry, so that 7 can be assumed to be zero.

Note that the A = (2, 2) algebra is invariant under the Z, automor-
phism

Q-+ Q_,
FVHFAa (5)

7 7,

with all other generators kept intact. This is mirror symmetry on the
level of the supersymmetry algebra.

Supersymmetric fields

The two-dimensional N = (2, 2) fields are representations of the N =
(2,2) algebra. They are usually defined as functions on the V' = (2, 2)
superspace, which is an extension of two-dimensional space-time with
four odd directions, parametrised by the fermionic coordinates

+

0=,0". 6)

All ¢’s are anti-commuting coordinates that are related by complex
conjugation,

+

(Qi)* =0 ) (7)

where the +-index stands for the spin under a Lorentz transformation.
Because the fermionic coordinates are anti-commuting, superfields can
be Taylor expanded as monomials in the §* and i

Some particularly interesting classes of superfields are defined in
terms of the supersymmetric covariant derivatives Dy and D,. The
latter are derivatives on N = (2, 2) superspace that are defined in such
a way that

{Di,ﬁi} = 28i (8)

We have the:



e chiral superfields ®, with D.® = 0 and the expansion

P=¢+0", +0¢_ +0T0F, 9)

e analogously, anti-chiral superfields ® with D+® = 0,

e twisted chiral superfields ®, with D, ® = D_® = 0 and the
expansion

D=0¢p+0T), +0 y_+670 G, (10)

* and analogously, twisted anti-chiral superfields D withD_® =

D_|_(D — 0

The two-dimensional field strength can be encoded as an auxiliary
term in a (separate) twisted superfield:

S=04+0" . +0 A\_+0"0 (D—iFy). (11)

Supersymmetric Lagrangian

The encryption of all fields in superfields, makes it much more simple
and elegant to write down Lagrangians. In particular, the N' = (2, 2)
Lagrangian is simply a sum of Kdhler potentials (and their twisted
analogues)

/ d*0d*0 K(®,®) = / d*0d*0 g;; D' DD, (12)
and holomorphic superpotentials (and their twisted analogues)
/ >0 W (®) + c.c. and / LW (D) + c.c, (13)

possibly combined with additional kinetic terms for the gauge fields.
Expanding this in the components of the superfields yields the ex-
pected kinetic and potential terms for the component fields. We will
see examples of this later.



(Twisted) chiral ring

Operators O in the N' = (2,2) theory (which may be thought of as
operator-valued products of fields) are called

e chiralif [Q.,0] =0

e anti-chiral if [+, O] =0,

e twisted chiral if [Q_, 0] = [Q_, 0] =0,

e twisted anti-chiral if [Q,, O] = [Q_, O] = 0.

Since half of the supercharges act trivially on these operators, they are
half BPS operators.

Similar to the conformal field theory, where one can define a prod-
uct between two primary operators, the (twisted) chiral operators
above form a ring. This ring may be defined in terms of the nilpo-
tent supercharges

Q% =Q_+¢Q, with (Q%>=0, (14)
Q3 =Q_+£Q, with (Q%)*=0, (15)

respectively, for any { € C with || = 1, and where for a moment we
have set Z = Z = 0. Indeed,

Qi—closed & twisted chiral, (16)
Q%—closed < chiral. (17)

To see this, note that the components of ()4 transform with opposite
charges under the U(1)y symmetry, whereas the components of )p
transforms with opposite charges under the U(1) 4 symmetry. Hence,
rotating all operators in the equation [ 5, O] = 0 with respect to
the U(1)y 4 symmetry, we conclude that the () 4 p-closed operators are
equivalent to (twisted) chiral operators. The ring structure defined by
the 4, g-cohomology is called the (twisted) chiral ring. It is graded
with respect to the U(1)y 4-charge.

The proper way to think about the (twisted) chiral ring is in terms of
topological twists. Topological twisting is a tool to preserve part of the
supersymmetry algebra on a curved (Euclidean) space-time. It works
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by embedding the Euclidean rotation group in the product of this
rotation group and the R-symmetry, and to consider this embedding
as the new rotation group.

For the (Euclidean?) 2d N/ = (2, 2) algebra we may choose the new
2d rotation group U (1)’; to be the diagonal subgroup of the old U (1) g x
U(1)g, where U(1)p, is either the vector or the axial R-symmetry:

A-twist : U(l)R = U(l)v (18)
B-twist: U(l)g =U(1)4.

Since the supercharges (1 and @, have the charges

(Mg, Q+] = +Q+, [Mg, Q4] = FQ. (19)

under the generator My of the (old) Euclidean rotation group U(1)g,
this implies that the supercharges ()4 ¢ and @) ¢ transform as scalars
under the new rotation group U (1), for any choice of . This implies
that it makes sense to consider their cohomology. The () 4-cohomology
is also known as the quantum cohomology. (I'll talk a little about this
next lecture.)

Note that each supercharge Qi 5, together with its Hermitean con-

jugate @i,B, generates an N' = (1,1) subalgebra of the N' = (2,2)
superalgebra, with

Q4@ = 2P +2im(e2), (@Y’ =@ =0.  (0)
{Q5.Qp) = 120 +2Re(62), (@)= (@)’ =0. (@)
This subalgebra will appear when we study BPS solitons in the 2d
N = (2,2) theory.?
Ground states

Any supersymmetric ground state |a) in the topologically twisted the-
ory can be obtained by acting with the corresponding (twisted) chiral

'The N' = (2,2) algebra changes by some factors of i after Wick rotating from Lorentzian to
Euclidean time, in such a way that the coordinates ¢ and 7 combine into a complex coordinate
z =0 +1T.

2In these formulae it is important that that the central charge Z appears in the () 4-commutator,
and Z in the Q@ p one. The difference between H and P is less important, I think, since we usually
study BPS states in a Euclidean setting in which the coordinates 7 and o are on equal footing.
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ring operators on a canonical vacuum state |0). This vacuum state
may be obtained by studying the two-dimensional theory on a hemi-
sphere, and stretching it into a long cigar - note here we use the fact
that the twisted supercharges are preserved on a curved space. The
corresponding boundary state ¢~#|¢)) then evolves into the vacuum
state denoted by |0). Acting with a (twisted) chiral operator O, on |0)
produces a new ground state

@) = 0a|0). (22)

The (twisted) chiral fields and ground states are in 1-1 correspon-
dence whenever the pairing

Nap = <04’6>7 (23)

is non-degenerate. This pairing may be visualised by inserting the
two chiral operators (),, ()3 on either pole of the two-sphere. The
pairing is indeed non-degenerate in most examples that we consider
(particularly, Landau-Ginzburg models in the B-twist, and linear sigma
models in the A-twist). The (twisted) chiral ring structure is then
encoded in the equation

QuQs =Y C.}Q,, (24)
0

where Cup, = 3. C, ;1,5 computes the three-point function of the
(twisted) chiral operators O, g, on the two-sphere.

1.0.1 Spectral curve

Suppose that we are considering a family 7. of N' = (2,2) theories,
related by (twisted) chiral deformations with parameter(s) z. In this
case, the (twisted) chiral ring defines a holomorphic bundle of com-
mutative algebras E over the parameter space C. Moreover, because
these deformations can be constructed by perturbing the Lagrangian

by local operators, we find that there is a holomorphic map of vector
bundles

q:TC — FE. (25)
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Dually, we may consider the spectrum ¥, of the commutative al-
gebra I/,. The point of 3, are in 1-1 correspondence with the ground
states of the two-dimensional theory 7. If our two-dimensional the-
ory is a massive theory, i.e. it has a discrete set of ground states and a
mass-gap, then the ground states sweep out a branched covering

N C. (26)

This branched covering has the interpretation of a spectral curve
associated to the (possibly higher-dimensional) Higgs bundle (E, ¢)
over C'with Higgs field ¢ : TC — EndE defined by (¢(v))(w) = ¢(v)-w.
If the holomorphic map ¢ is an isomorphism, then the spectral curve
> may be embedded in 7T%C.

Surface defects

This all may sound familiar from Andy Neitzke’s lectures last week.
Remember though that in this two-dimensional setting the space C'is
the moduli space parametrizing deformations of the 2d theory 7.

In fact, it turns out these two structures can be reconciled by con-
sidering two-dimensional BPS surface defects in the four-dimensional
N = 2 theory. In particular, so-called canonical surface defects are
such that their moduli space of deformations is equal to the UV curve
C, characterizing the 4d A/ = 2 theory. We will see an example of this
later.

Example: Landau-Ginzburg models

Let us illustrate these structures for the illustrative class of Landau-
Ginzburg theories. A Landau-Ginzburg model is a 2d N' = (2,2)
theory with n chiral superfields ®' and a superpotential W (®"). The
fields @' take values in a Kdhler manifold X, whose Kihler metric

gi; = 0,0; K (®", ) (27)

is defined in terms of the Kdhler potential. The superpotential W :
X — Cis a holomorphic function on X. For us, the Kdhler manifold
X will just be C".
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Spelling this out in components of the chiral superfields @/, reveals
that the corresponding bosonic part in the Lagrangian is given by

R
Lpos = 9;;0"9'0, 97 + ng oW o; W, (28)

after integrating out the auxiliary fields.

The perturbative vacua of the theory are therefore given by the
critical points of W, which are the solutions of 9;)}V’ = 0. In the
following we assume that the Hessian of I¥/ (the matrix of second
derivatives) is non-degenerate at every critical point. This implies
that the theory is massive, i.e. it has a discrete spectrum and has no
massless modes in any vacuum. As a consequence, there is a natural
length-scale in the theory.

Suppose the superpotential W (¢') is a holomorphic function of
some parameters z € C. The spectral curve X is swept out by the
critical points of W, whereas the chiral ring is given by the Jacobian
ring

E. = C[¢']/(aiW), (29)

where (0;IW) is the ideal generated by the 0;,W. The map ¢ takes the
vector 0, € T'C to the element 0, € E.

As a concrete example, suppose that we consider a Landau-Ginzburg
model with a single superfield and the superpotential

W(¢) = %of” — 20, (30)
sothat C' = C.. Note that thisis a deformation of the quasi-homogeneous
superpotential W (¢) = 3¢° that flows in the IR to the conformal A,
model.

Since 9;,W = ¢* — 2, the chiral ring is generated by the fields 1 and
¢ with the relation ¢? = 2. The spectral curve ¥ is therefore swept out
by the equation

Y=z, (31)

where we have introduced = := ¢. Note that this is a double cov-
ering of C branched over z = 0. The value of the superpotential in
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the two vacua z = £/z of the two-dimensional theory T is given by
W (z) = F2252.

(picture double covering)

Note that since the superpotential W (¢) contains all possible chiral
deformations — the only chiral operators in this theory are the identity
operator and the field ¢ —, the spectral curve X is embedded in T™C.

BPS solitons and MSW complex

You may be worried that there is an issue here. Indeed, remember the
(brief) discussion of supersymmetric quantum mechanics (SQM) in
Andy’s lectures, whose (Euclidean) Lagrangian contains the bosonic
terms

1., 1dn®
EﬁoQSM = 5612 + 2dq (32)

in terms of a particle ¢(¢) moving on a Riemannian manifold M and a
real Morse function h : M — R. The SOQM supercharge () is conjugate
to the exterior derivative on M and the exact vacuum structure should
thus be independent of h.

The resolution in this model is that not all critical points of W are
exact vacua. There are non-perturbative contributions, parametrized
by BPS solitons that tunnel between the critical points of h, which
may lift the vacuum energy. The vacuum structure is governed by the
so-called Morse-Smale-Witten complex, whose basis is given by the
critical points of i (the perturbative vacua), and whose differential ()
counts (with signs) the number of solitons between the perturbative
vacua. It's the cohomology of this complex that determines the exact
vacua of the SQM.

Since the Landau-Ginzburg model can be reduced to a holomorphic
version of supersymmetric quantum mechanics (say by taking all fields
to be constant in Euclidean time), a similar story holds here. Let us
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therefore find out in detail how we find the BPS solitons in the Landau-
Ginzburg model.

Suppose that we consider the Landau-Ginzburg model on an in-
terval [, times R; with coordinates o and 7. Then we need to specify
a boundary condition at the ends of I,. Suppose that the fields ¢'(c)
approach the vacuum value ¢/, on one end and ¢} on the other. With
a few manipulations of the Lagrangian (see for instance page 3-4 of
[Cecotti-Vafa, hep-th/9211097]), one finds that such a solitonic solution
has a minimal energy

Eop = W (B) — W(a)], (33)

whenever

dﬁbi . C ij
do = 59 JajW7 (34)
with
W(B) — W(a)

— . 35
= W5 = W) )

Equation (34) is called the ¢-soliton equation. Any solution to this
equation corresponds to a BPS soliton with central charge

Zas = W(B) — W (). (36)
Indeed, since
2.5 — 2Re(( ' Z,5) = 0, (37)

it follows from the Euclidean version of equation (20) that the soliton
preserves the Euclidean A = (1, 1) subalgebra generated by Q% with
£ =1C.

Note that the ¢(-soliton equation (34) implies that

O W = %gw@ZW@JW c CRZ()a (38)
so that the quantity
H = Im(¢"'W) (39)
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is constant along the soliton trajectory. The soliton equation may thus
be interpreted as a Hamiltonian flow equation with respect to the
Hamiltonian H.

The soliton equation may also be interpreted as a downward flow
equation with respect to the Morse function h = Re(¢~'W). Indeed,
the Morse function h will be decreasing along the flow. (The equiva-
lence of these two forms follows from the Cauchy-Riemann equations
for the holomorphic function (~'¥).

Roughly, the story is now as follows. Fix (. For each critical point a
of the Morse function h, consider the downward flow with respect to h.
This sweeps out so-called Lefschetz thimbles J§ in the Kdhler manifold
X. If we rotate ¢ it may happen that we encounter critical values (,z
such that there exist BPS solitons connecting the perturbative vacua
labeled by aand 3. In that situation, a topology change occurs amongst

the Lefschetz thimbles, in which the thimble Jg stays invariant, but the
thimble J§ picks up a contribution

J$ = TS+ tas s, (40)

where 11,4 is the two-dimensional BPS index that counts (with sign)
the number of BPS solitons between the vacua a and /5.

(tigure with example of Lefschetz thimbles)

Equation (40) might remind you of the Stokes phenomenon, which
we will explain later in this section, and leads to a geometric under-
standing of the Cecotti-Vafa wall-crossing formula.

Example: cubic LG model

Let us consider the cubic Landau-Ginzburg model 7’._; as an example,
so that X = C and W (z) = 32® — z. This means that there can be (and
in fact are) two solitonic solutions between the vacua at 7. = +1 with

central charge Z = F2 and ¢ = F1.

The Lefschetz thimbles J$ are submanifolds in X = C, containing
the critical points x = %1, such that the Hamiltonian

H(x) = Im(C"' W (x)) (41)
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is constant, while the Morse function
h(z) = Re(¢™'W (), (42)

is decreasing in the direction of the flow. Itis a good exercise to plot the
Lefschetz thimbles .J$ numerically, and check that they are disjoint for
generic ¢, but overlap precisely when ( = £1. Indeed, since H(z) van-
ishes along the real axis for ( = +1, whereas h(x) decreases/increases
along the interval [—1, 1] for ( = %1, it is clear that the Lefschetz thim-
bles 5~ and J=*! overlap on this interval. The interval [-1,1] C C
(with the two possible orientations) thus represents the two BPS soli-
tons with central charges Z = +3.

(add some Mathematica plots)

Spectral networks 1

Let us go back to a generic massive two-dimensional V' = (2, 2) theory
T.. Then we can similarly define BPS solitons (or 2d BPS states) as
solutions to the BPS bound

Z=C(E (43)

for some ¢ € C with || = 1. Just as before, these are invariant under
the A/ = (1, 1) subalgebra generated by Qi with £ = (.

Consider the BPS spectrum of the theore 7, as we walk across its
deformation space C'. The 2d BPS states with central charge arg Z = ¢
can be illustrated as paths v(¢) on C solving the constraint

Im(e""Z) = 0. (44)

Equivalently, such paths may be conveniently plotted by solving the

first-order ODE
az
— =¢' 45

starting at the locus on C' where a pair of 2d vacua collides. This was
first done in [GMN, WKB], resulting in a beautiful paper with lots of
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cool pictures. The collection of all such trajectories (¢) for a given
phase ¥ was called a spectral network W.

As an example of a spectral network, consider the Landau-Ginzburg
model with cubic superpotential

W(z) = %xg — 2, (46)

whose two vacua correspond to the two solutions of the equation
Yozt =2 (47)

Fix the phase ). Then there may be a 2d BPS state with central charge
such that

arg(Zap) =0 (48)

at the locus in C where W (3) — W () = £32%? has phase ¢. This gives
the following picture on C' = C.

(spectral network with three-pronged vertex labeled by 12, 21)

In this picture we have chosen a trivialization of ¥, i.e. a choice
of vacuum 1 and 2 across the parameter space C'. The orange cross
labels the point z = 0, where there is only a single vacuum and 7,3 is
thus equal to zero. This point emits three trajectories, which may be
oriented in a way that F, 3 increases and labeled by 12 or 21 depending
on whether it is the BPS states with central charge Z;5 or Zs; that has
phase ¥ along this wall.

How do we interpret this picture? Suppose we fix a point z € C
corresponding to a 2d theory 7.. Then we can vary ¢ and check
whether for which values of ¥ there might be walls that run through
the point z. If there is such a trajectory with label a3 for a certain
phase ¥,3, then we know that there is a 2d BPS state in the 2d theory
T, connecting the vacua a and 8 with arg Z,3 = 9,3.
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2d wall-crossing

Whereas the 2d BPS spectrum stays invariant under small deforma-
tions, as Andy already discussed in his lecture about BPS states, there
are real codimension-1 loci on the parameter space C, where

Zag + Zﬁ,y = Zay- (49)

At such a locus the 2d BPS states with central charge Z,3 and Z3, may
form a 2d BPS bound state with central charge Z,.,. These instances of
2d wall-crossing can be conveniently read off from the spectral network
Wy.

Before we explain this, note that to see 2d wall-crossing we need
to have at least 3 vacua in the 2d N = (2,2) theory. Equivalently,
the degree of the covering ¥ — C should be at least three. The 2d
wall-crossing then appears when two trajectories labeled by a3 and
B~ intersect each other. At such an intersection a new trajectory with
label oy may emerge, which corresponds to the new 2d BPS state with
label ay. In that sense, 2d-wall-crossing is literally the crossing of
trajectories, also known as walls, of the spectral network W;.

An example is given by the Landau-Ginzburg model with quartic
superpotential

1 1
W) = Z¢4 — §Z1¢2 — 220, (50)
whose chiral ring is the Jacobian ring

E. = C[¢]/{¢* — 210 — 20 = 0), (51)

and whose spectral network Wy at ¥ = 7/2 is illustrated below, for
z1 = —1 held fixed.

(figure on p18 of BPS-lectures.pdf)

The Cecotti-Vafa wall-crossing formula can be obtained by going
around any intersection point of trajectories in a small loop. Suppose
we decorate this loop with marked points corresponding to the trajec-
tories of the network, and the intervals between points by the vacuum
that may be associated to this interval (the index « that appears in the
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label of both trajectories on either side of the interval).
(figure of simple 2d wall-crossing, with loop and labels)

To each marked point we may then associate the transformation (40)
of Lefschetz thimbles. If a trajectory enters the loop, instead of exiting
the loop, we associate to the corresponding marked point the inverse
of the transformation (40). Composing all five transformations when
going around the loop, and imposing that the resulting transformation
is the identity, gives the

(e, B) = pla, B)
W(B,y) = u(B,7) (52)
W a,y) = pla, ) £ pla, B)u(B, 7).

The Cecotti-Vafa wall-crossing formula was rederived in this way in
[GMN, 2d-4d?].

Note the similarity of this derivation with the derivation of the 4d
wall-crossing formula in Andy’s lecture. Remember that in that case
we considered a so-called BPS scattering diagram embedded in the
Coulomb branch B x S'. This scattering diagram encodes the 4d BPS
states in each vacuum u € B with specific arg(Z%!) = 44, In that case
the analog of the chiral ring was an algebra of IR line defects labeled
by XX, obeying the commuting algebra

XWIR X;R _ (_1)<%u> Xvﬂ—iw

(53)

thatis two line defects, on top of each other, behave the same as a single
line defect with the total charge. Remember that these line defects exist
for any phase 1) (they were the line defects preserving the supercharges
invariant under the subalgebra labeled by 1J). In contrast, the 4d BPS
states only exist for discrete phases %4,

Andy argued that the KS wall-crossing automorphism

KL (AR) = (1— x2R)om xR, (54)

may be explained by considering what happens to the algebra of IR
line defects when the phase ¥ is varied across the phase ¥4 of a four-
dimensional BPS state. He mentioned that in this situation the 4d
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BPS state sort of gets absorbed by the line defects in a way described
by the operation K, (X}}), or better the IR line operator gets dressed.
More details can be found in the "Framed BPS states" paper by Gaiotto-
Moore-Neitzke [1006.0146].

Spectral networks 2

More generally, for any N = (2, 2) theory whose vacuum structure is
encoded in the spectral geometry ¥ C T*C, the central charge Z can
be expressed in terms of the tautological 1-form A = xzdz restricted to
Y. That s,

A7 = \. (55)

Suppose that we choose a trivialization of the covering ¥, i.e. a
choice of labels « of the vacua across C. Then, the (a)-trajectories of
the spectral network Wy are then given by all paths p(¢) on X for which

(Ao — Ag)(v) € "R (56)

for any tangent vector v to p(t). The (a5)-trajectories may then be lifted
to open paths 7,5 on X connecting the preimages 2, and z3, such that
the tautological 1-form A has the same phase along the path v,;3.

The tautological 1-form A, when restricted to X, can be expressed
in terms of the invariants of the Higgs field ¢. In the case that the
covering > — C'is of degree 2, such as for the cubic Landau-Ginzburg
model, the trace of ¢? determines a quadratic differential ¢5 on C. We

then have
A=/ (57)

The fact that trajectories of the corresponding spectral network do
not intersect each other, is geometrically because the spectral network
Wy is the collection of singular leaves of a foliation of ¢, with phase
v. Any degree 2 spectral network thus locally looks like the cubic
Landau-Ginzburg network.

Open special Lagrangian discs

So far, we have explained that the 2d BPS states with arg(Z,s3) = ) are
encoded in the spectral network Wy as (a/3)-trajectories, which may
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be lifted to open paths ~,3 on ¥ connecting the preimages z, and z3.
Note that 7,5 is a boundary component of an open "disc" D, 3. (We put
disc in quotation marks because it is really an open cycle that in the
simplest situation can be topologically described as an open disc.)

(example open disc)

The BPS condition saying that A has a constant phase along v,3
implies that the cycle D,z is in fact special Lagrangian with respect
to the holomorphic 2-form e~"’d\. That is, the BPS condition in the
2d supersymmetric field theory corresponds to a so-called calibration
condition in the associated geometry. (Such a correspondence occurs
frequently when studying supersymmetric theories.)

We thus find that the 2d BPS states in the theory 7', can be encoded
in the spectral geometry as open "discs" with one boundary component
on X and one boundary component on the fiber I, of T*C' at z € C.

Vortices in 2d gauge theory

So far we have illustrated the proporties of 2d A" = (2, 2) theories with
Landau-Ginzburg examples. In particular, we have not studied gauge
theories yet. Let us do something about this.

Considering a 2d N' = (2,2) gauge theory means that the La-
grangian changes in the following way. First of all, we need to add the
kinetic term for the gauge field, which can be written as

(/d%&@T&EWL (58)

in terms of the twisted chiral superfield ¥ encoding the two-dimensional
tield strength. Second, we of course need to introduce gauge covariant
derivatives to enforce gauge invariance. And last, if the gauge group
includes a U(1) factor, it is possible to turn on a twisted superpotential,
which is simply of the form

—_

W =t Ty, (59)

for complex t. The real part r of ¢ is known as the Fayet-Iliopoulos (FI)
parameter.
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Suppose for instance we consider a 2d N' = (2,2) theory with a
U (k) gauge group coupled to n chiral superfields, which transform in
the fundamental representation of U(k). The corresponding bosonic
part of the Lagrangian reads

1 /1 -
LbOS = ? <§TI'FA AN *FA + (DMO-)Q) + Zl ‘DM¢Z‘2 (60)

n

. 2
- Seltoaton e (S ael o)
1=1

1=1

Similar to the way we found the BPS solitons in a LG model, we
can now consider this theory in a Euclidean background and write
down the energy of a field configuration, with the boundary condition
that the fields ¢; wind around in a certain way when going the circle
around infinity. This winding is characterized by the homotopy group

IL (U (k) % SU(”)/SU(k)diag) = 2. (61)

which means that the vortices are labeled by a single winding number
m. (Explain, and check!) Moreover, the scalar field o we will not play
a role here, and we just set it to zero.

The energy of such configurations can then be written in the form

2
1 e? i
_ 2 T
E/dz;Tr(*F —§<;¢z¢i—¢1k>> (62)
+/d22 Z\EA@P—FT/d?zTr*FA,

=1

(where I have parametrized the Euclidean space-time with complex
coordinates z and z), which shows that the energy

EZTTI/ Fy (63)
R2

is greater or equal than r times the flux through the surface. This flux
is in fact equal to the vortex number m.
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There is an equality for configurations that obey the first order
equations

2 N
(& _
“Fa= 213 ¢l —rly, Dagi = 0. (64)

These equations are called the BPS vortex equations. They describe
point-like energy configurations, labeled by the flux, or vortex number

m = ¢ (Fy). (65)

Note that the vortices are the analogous of point-like instantons in four
dimensions. In particular, one can write down a partition function (in
the A-twisted theory) that localizes precisely on the vortex equations

Bl ) = 32 75 (66)

vortex

where z = €'.

2d sigma model

Another way to study this 2d N = 2 gauge theory is to consider its IR
description. Asusual, we find its moduli space of vacua by minimizing
the potential energy

2 n
= —Tr (Z ¢,¢I — r1k> + ﬁTr 0,0l + Z ¢T{0 ol e (67)
i=1

The moduli space of vacua is then obtained as the quotient
Mvac = {U = 0}/U(k) (68)

If r > 0 and we consider solutions such that scalar ¢ vanishes, then
the vacuum moduli space is parametrized by the Grassmanian of k-
planes inside of C". (More generally, we could add some chiral fields
in the anti-fundamental representation of U (k) to the Lagrangian, and
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the corresponding moduli space would be the flag manifold.) For
example, when k = 1 we find that the equation

{Z $il* =7}/U(1) (69)

describes the projective plane CP"!. This is known as the Higgs
branch of the theory (as the gauge group is spontaneously broken and
the scalars have dynamically obtained a vev).

In the IR limit, the 2d ' = 2 gauge theory may be studied as a
non-linear sigma model into the Higgs moduli space. This gives a
description of the vortex partition function in terms of quasi-maps
from P! into the Grassmannian (with suitable boundary conditions at
infinity of P!). This relates the 2d N' = 2 theory to Gromov-Witten
theory of the Grassmannian.

Another option is to keep the diagonal components of the scalar
field 0. Such solutions parametrise the Coulomb branch, where the
gauge group is broken to a product of U(1)’s. This means that the
components of the chiral field ¢; have obtained a mass proportional to
the eigenvalues of o2, which means that to find the proper low energy
description, we need to integrate them out.

It is well-known that integrating out the chiral fields introduces an
effective twisted superpotential 17 to the effective description. In the
case where k = 1 this superpotential is of the form

We(S) =2 + nX (log™ — 1). (70)

From our previous discussions we know that this means that the
twisted vacua are the solutions to the equation

a/Weff
-0 71
ao_ Y ( )
or in other words, the spectral curve ¥ is parametrized by the equation
o" = ¢, (72)

This equation may also be familiar for you from the perspective of the
non-linear sigma model, where it determines the quantum cohomol-

ogy
Clo]/(o" = €'). (73)



That is, the deformation of the standard cohomology of CP"~!
In fact, the two descriptions on the Coulomb and Higgs branch are
related by mirror symmetry.

Vortex partition function

Computing the partition function

Zvorex = "
wl) =2 g,

,of a2d N = (2, 2) theory is not easy in general.

Just like in four dimensions, we need to introduce an additional
ingredient to be able to compute the partition function using localisa-
tion techniques: the two-dimensional analogue of the ()-background.
Parallel to Nikita’s explanation, we can define this two-dimensional
(2-background by starting with a four-dimensional background: a fi-
bration of the two-dimensional spacetime C over an auxiliary torus
T2. That is, of we go around the circle S} of the torus, we rotate our
space-time as

(74)

1,
vortex (m)

2 €2 (75)

and its complex conjugate for going around S}.
More precisely, the metric of the four-dimensional background is
given by

ds® = |dz — iz(edw + €dw)|* + |dw]|?, (76)

where z is the complex space-time coordinate and w the complex
coordinate on the torus. The two-dimensional (2-background is then
obtained by dimensional reduction along the periodic directions. This
effectively constrains the vortex dynamics to the origin of the two-
dimensional space-time.

Mathematically, this turns out to be equivalent to computing the
equivariant volume of the vortex moduli space with respect to the C*-
action z — ez on C. With an available quiver description of the vortex
moduli space, it is then possible to find explicit expressions.
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A simple example is the abelian Higgs model, i.e. the 2d U(1)-
theory coupled to a single massless chiral multiplet. Remember that
it’s chiral ring is simply determined by the equation

o=e. (77)

The moduli space of m vortices on C in the abelian Higgs model is
simply parametrized by their positions,

Mvortex(m) — (Cm/va (78)

where the quotient by S, reflects the fact that the vortices are indistin-
guishable. The 2-background just acts as a rotation on each C-factor
in the product.

The vortex partition function of the abelian Higgs model can then
be computed to just be

1 z
_ E m — —
Zvortex(za 6) - z em m| = €Xp (6) ) (79)

m

Remember that Nikita explained to us how the four-dimensional
(-background quantizes the Seiberg-Witten geometry. In two dimen-
sions something similar happens: the two-dimensional (2-background
turns out to quantize the twisted chiral ring equation. Indeed, notice
that

(Eat - et)Zvortex(Z; E) =0 (80)

and that the differential operator €d; — e’ reduces in the limit e — 0 to
the twisted chiral ring equation o = €',

This simple example is from the paper [Dimofte-Gukov-Hollands].
Many more details about vortex partition functions can for instance be
found in [1509.08630, ...]. A few years later much more effective tech-
niques, called supersymmetric localization, were developed that allow
one to compute the exact partition function of any N' = (2, 2) theory
in a supersymmetric background like S? (see for instance 1206.2606,
1206.2356]).

Mention relation to gauge-Bethe correspondence.
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The Airy function

Another non-gauge example is the cubic Landau-Ginzburg model. In
the saddle point approximation its partition function roughly resem-
bles the Airy function

3
Ai(z) = /d¢ exp (% — z¢> : (81)

Indeed, such statements have been made precise in the framework of
topological twists and supersymmetric localization (see for instance
[1210.6022]). (This was originally discovered in the context of topolog-
ical minimal models and the KdV hierarchy. See for instance [9201003,
we]s)

In particular, one finds that the 2d partition function in the Q-
background is given by the Airy function

Z%(z, €) = Ai(z/¥?). (82)

The chiral ring equation x2

equation

= z gets deformed into the differential

(20% — 2) Z*(z,€) = 0. (83)

Non-perturbative partition function

Yet, we claim that this is not yet the full story. Suppose that we want
to compute the partition function of a massive 2d N/ = (2, 2) theory in
the (2-background with parameter €. Then we need to pick a boundary
condition at infinity. For this we could pick any of the vacua a. We
may then compute the resulting two-dimensional partition function
with respect to the supersymmetry generators Q¢, Q) preserved by the
2d Q-background. For € € C with fixed arg(e) = ¢, this implies that
€

(=—. (84)

e
We call the resulting partition function

Z(z,¢€), (85)
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where the phase of € is initially fixed, but we try to analytically continue
ittoe € C.

What happens if we vary the phase ¥? We know that when ¢
crosses a BPS phase 9,3, the Lefschetz thimble J, corresponding to the
vacuum « picks up an additional contribution J3 (see equation (40)).
This implies that the 2d partition function similarly transforms as

Zg(z, €) — Zg(z, €) + lap Zg(z, €). (86)

Hence, the two-dimensional partition function Z? is locally constant
with respect to ¥ and jumps precisely at the phases of 2d BPS particles.
Moreover, it turns out that jump of Z” is proportional to the central
charge of the 2d BPS state.

Exact WKB and 2d BPS states

This story fits perfectly into the formalism of exact WKB analysis when
C'is a complex curve. Details of this analysis are taught this week by
Kohei Iwaki, so here we just give a brief summary of how it fits in with
our story.
Let us see how this works in an example, say the cubic LG model.
Note 2d BPS states can be interpreted as Lefschetz thimbles.
Other example: P'-model

Categorification

In the story so far we have picked the simplest boundary conditions
possible, labeled by elements of the twisted chiral algebra. General
considerations tell us that possible boundary conditions instead form
a category, with morphisms defined by pointlike operators that can be
inserted at the boundary. In the context of 2d N/ = (2, 2) theories these
categories have been studied in detail by Gaiotto-Moore-Witten.

The way they go about this problem for LG models is very informa-
tive. Remember that we considered the theory on a space-like interval
times time and found the boundary conditions, labeled by elements
a and S in the chiral algebra, by assuming that the fields are constant
in time. Instead, GMW consider the two-dimensional theory as a su-
persymmetric quantum mechanics model with as its target manifold
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the space of maps from the interval (with ends labeled by elements
a and S into the Kdhler manifold X. The critical points of this SQM
are precisely the solutions to the (-soliton equations with boundary
conditions given by o and /5. So in their picture the BPS-solitons label
the boundary conditions as time goes to £00. Since the energy of such
a BPS soliton is localised in the center of the interval, we may interpret
the soliton as a morphism from the chiral algebra to itself.

(picture rectangle with boundary conditions)

Since the critical points of the SQM are given by the BPS solitons,
these form the basis for the "categorified" MSW complex. The differ-
ential in this case counts (with signs) the number of solutions to a new
(-instanton equation, that only preserves a single supersymmetry. It is
very interesting research problem to find the corresponding partition
functions.

Part 2: 4d QFT’s and non-perturbative Seiberg-
Witten geometry

Brief review about what we learned about4d N = 2 theories in lectures
by Andrew Neitzke and Nikita Nekrasov last week:

Seiberg-Witten geometry

IR geometry for any four-dimensional A/ = 2 theory.

Introduce four-dimensional Seiberg-Witten prepotential. Remember
that this can be recovered in the ¢; — 0-limit of the instanton partition
function Z™" (¢, €3) (Which may be computed exactly for a certain class
of N = 2 theories with a Lagrangian description).

28



Theories of class S

Write down the "data" describing a class S theory.

4d BPS states

Review what it means to be a four-dimensional BPS state in a Coulomb
vacuum u. In particular, note that they are labeled by a phase 9
(corresponding to their central charge Z) and by an element v € I’
(corresponding to their electro-magnetic charge).

Spectral networks 3

Define spectral networks W, y in terms of the data of class S theories.
Argue that 4d BPS states in the vacuum v with central charge arg(Z) =
v are encoded as saddle trajectories in the spectral network W, y. Their
electro-magnetic charge ~ is the homology class of the 1-cycle on ¥
associated to the saddle trajectory.

Discs and M2-branes

Note that the 4d BPS states are realized in terms of special Lagrangian
"discs" in T*C. These correspond to M2-branes ending on the spec-
tral curve in the Mb5-brane picture. In type IIB they lift to special
Lagrangian 3-cycles in the local CY defined by

w402 o ()2 L an(2) =0, (87)

i.e. the C*-fibration over 7*C' that degenerates precisely over the spec-
tral curve X.

Let us now embed in this context what we learned from two-
dinmensional N = (2, 2) theories:

Surface defects

Describe surface defects and how to realise them by coupling a two-
dimensional N = (2, 2) to the four-dimensional ' = 2 theory. (This
is described in detail in the GMN paper about 2d-4d wall-crossing
[1103.2598].)
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Canonical surface defects are realised by a family of 2d N = (2, 2)
theories whose parameter space is exactly the UV curve C of the four-
dimensional class S theory.

Example: the LG theory can be realised as a canonical BPS surface
defect in the AD,, theory.

Example: the CP" model can be realised as a canonical surface
defect in the pure SU(n) theory.

2d-4d BPS states

The 2d BPS states become so-called 2d-4d BPS states. They obey wall-
crossing formulae that are a natural synthesis of the already discussed
2d and 4d wall-crossing formula (see [1103.2598]).

Yet, we want to do much more. Our goal will be to construct a
non-perturbative four-dimensional partition function Z}, that is lo-
cally constant in a phase Y. To do this, we start by introducing the
coordinates X in more detail.

Line defects

Remember the (pure) 4d wall-crossing picture. Here I want to describe
a more mathematical understanding of the IR line defects AJ®.

Abelianization
Spectral coordinates
Varia

relation to FG and FN coordinates
the variables in wall-crossing formula
relation to exact WKB, quantum periods

Quantum Seiberg-Witten geometry

(2 background
NRS superpotential
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Non-perturbative Seiberg-Witten geometry
Example: pure SU(2) theory

Example: N; =4 SU(2) theory
Holomorphic Floer theory

Spectral problems

Harmonic oscillator example Spectral problems of class S Spectral co-
ordinates and quantization conditions Quantum periods and spectral
determinants

Example: Mathieu spectral problems

Example: Heun spectral problems
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