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1 Part I : Introduction to Exact WKB Method

In the first part, we consider the Schödinger-type ODEs of the form
(
!2 d2

dx2
−Q(x)

)
ψ(x, !) = 0, (1.1)

where ! is a parameter and Q(x) is a rational function of x. The goal of Part I is to provide
an explanation of the fundamental concepts of the exact WKB method ([92, 69]) and to
introduce its applications. In particular, we will see how the monodromy or Stokes matrix
of equation (1.1) is described using the Voros periods (also called quantum periods, spectral
coordinates) through the exact method. From a geometric perspective, this corresponds to
the concept of (non-)abelianization of [38, 39, 47, 49]. This point of view will be useful in
studying the Painlevé equation in Part II.

We denote by
φ(x) = Q(x)dx2 (1.2)

the meromorphic quadratic differential on P1 associated with (1.1). Below we assume the
followings.

Assumption 1.1.

• ! is a real positive and small parameter; that is, 0 < ! ≪ 1.

• φ has at least one zero, and all zeros of φ are simple.

• φ has a pole at x = ∞ of order at least 2.

1.1 WKB solution, spectral curve and turning points

Here we recall a construction of (formal) WKB solutions of the Schrödinger-type ODE (1.1).
See [69, §2] for details.

1.1.1 Construction of WKB solution

Let us take a new unknown function P (x, !) defined by

ψ(x, !) = exp

(∫ x

x0

P (x′, !) dx′
)

(1.3)

with x0 being a generic base point. Then, it satisfies the so-called Riccati equation

!2
(
P (x, !)2 + dP

dx
(x, !)

)
= Q(x) (1.4)

associated with (1.1). Now we put the following WKB-ansatz:

P (x, !) =
∑

m≥−1

!mPm(x) (1.5)
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where Pm(x) are assumed to be holomorphic on some domain. The Riccati equation (1.4)
then leads the following set of recursion relations for Pm(x), which we call theWKB recursion:

P−1(x)
2 = Q(x), (1.6)

2P−1(x)P0(x) +
dP−1(x)

dx
= 0, (1.7)

2P−1(x)Pm+1(x) +
m∑

ℓ=0

Pℓ(x)Pm−ℓ(x) +
dPm(x)

dx
= 0 (m ≥ 0). (1.8)

We can easily solve the recursion relation term-by-term and obtain two solutions

P (±)
−1 (x) = ±

√
Q(x), P (±)

0 (x) = −Q′(x)

4Q(x)
, P (±)

0 (x) = ±4Q(x)Q′′(x)− 5(Q′(x))2

32Q(x)5/2
, . . .

(1.9)
depending on the choice of the square root of (1.6). Thus we obtain two formal solution of
Riccati equation (1.4) and the corresponding WKB solutions as

P (±)(x, !) =
∑

m≥−1

!mP (±)
m (x), ψ±(x, !) = exp

(∫ x

x0

P (±)(x′, !) dx′
)
. (1.10)

Here and in what follows, integrals of formal series are understood as term-wise integrals.
It is convenient to use odd/even decomposition

Podd(x, !) =
P (+)(x, !)− P (−)(x, !)

2
, Peven(x, !) =

P (+)(x, !) + P (−)(x, !)
2

. (1.11)

Then, we have P (±)(x, !) = ±Podd(x, !) + Podd(x, !) and

Peven(x, !) = − 1

2Podd(x, !)
dPodd

dx
(x, !) (1.12)

holds as formal series in !. Therefore, we can take

ψ±(x, !) =
1√

Podd(x, !)
exp

(
±
∫ x

x0

Podd(x
′, !) dx′

)
(1.13)

as the WKB solution, which is differ from (1.10) up to formal series of ! with x-independent
coefficients. It can also be written as a formal series with an exponential factor:

ψ±(x, !) = e±S(x)/!
∑

m≥0

!m+ 1
2ψ±,m(x), S(x) =

∫ x

x0

√
Q(x′) dx′. (1.14)

If we truncate the series at the first term, then we have the traditional WKB approximation
e±S(x)/!Q(x)−1/4. The WKB solution (1.13) is normalized by specifying the lower endpoint
x0 and the path of integration. We will later discuss how to choose the normalization when
describing connection formulas.
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Example 1.2 (Airy equation). The Schrödinger-type ODE (1.1) with Q(x) = x is called the
Airy equation. For this case, we have

P (±)
−1 (x) =

√
x, P (±)

0 (x) = − 1

4x
, P (±)

1 (x) = ∓ 5

32x5/2
, P (±)

2 (x) = − 15

64x4
, . . . (1.15)

and

ψAiry
± (x, !) = e±

2x3/2

3!
!1/2
x1/4

(
1± 5

48x3/2
!+

385

4608x3
!2 + · · ·

)
(1.16)

where we have taken the lower endpoint x0 in (1.13) at ∞ (expect for the leading term). It is
known that the rational numbers appearing in the coefficients are related to the intersection
numbers on Mg,n through the topological recursion and quantum curves (see [44, 93, 16]).

Remark 1.3. The above construction of WKB solutions can be easily generalized to the
case where the Schödinger potential Q(x) has !-series expansion Q =

∑
m≥0 !mQm(x), by

replacing the right hand side of (1.6), (1.7), (1.8) by Q0(x), Q1(x), Qm+2(x), respectively1.
In the case, the associated quadratic differential (1.2) is replaced by Q0(x)dx2 (see Exercise 1
below), and we need further conditions to guarantee the Borel summability of WKB solutions
in addition to Assumption 1.1 (c.f., [60]).

1.1.2 Spectral curve and turning points

In view of (1.9), it is found that each coefficient of P (±)(x, !), the logarithmic derivative of
the WKB solution, is multivalued function of x. Therefore, it is natural to consider

Definition 1.4. The Riemann surface

Σ = {(x, y) ∈ C2 | y2 = Q(x)}. (1.17)

is called the (WKB) spectral curve, or the classical limit of the Schrödinger-type ODE (1.1).
We also denote by Σ its compactification.

The Riemann surface Σ is an important geometric object in WKB analysis. We denote
by π the projection map Σ ∋ (x, y) )→ x ∈ P1. We usually identify the point x with a point
(x, y) on Σ by taking an appropriate branch cut for the square root

√
Q(x), and regard x as

a local coordinate of Σ as well.
Note that the path of integration in (1.10) or (1.13) should be considered on

Σ′ = Σ \ π−1(Crit(φ)), (1.18)

where Crit(φ) := {zeros and poles of φ(x)} is the set of critical points of φ(x). These points
also play crucial role in the WKB analysis.

Definition 1.5. A turning point of the Schrödinger-type ODE (1.1) is either zero or simple
pole2 of φ(x). The poles of φ(x) are called singular points of (1.1).

1In this case, Podd/Peven defined in (1.11) can contain even/odd degree terms of !.
2The traditional WKB analysis only considered the zeros of Q(x) as turning points, but Koike’s research ([71]) revealed that

simple poles also play a similar role as turning points. Therefore, the above definition is now adopted. To distinguish it from
the conventional turning points, it is sometimes referred to as a “turning point of simple pole-type”. See also [48].
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The WKB solutions cannot be defined not only at singular points but also at turning
points. In quantum mechanics, the connection problem of WKB solutions around the turning
point has been studied. Such connection formulas will be discussed in §1.3 from the viewpoint
of the Stokes phenomenon with respect to !.

Before ending this subsection, we note that the WKB solutions thus constructed are
usually factorially divergent series of ! at any point x.

Proposition 1.6. Let K be an arbitrary compact set that includes neither turning points
nor singularities. Then, there exists CK , rK > 0 such that

sup
x∈K

|P (±)
m (x)| ≤ CK rmK m! (1.19)

holds for all m ≥ 0.

See [2] for a proof of this fact. In next subsection, we will give a criterion to determine
when this divergent series can be Borel summable.

Excercise 1. Prove that the Schrödinger-type ODE (1.1) is transformed to
(
!2 d2

dz2
− Q̃(z)

)
ψ̃ = 0, Q̃(z) =

(
dx(z)

dz

)2

Q(x(z))− !2
2
{x(z); z} (1.20)

under a holomorphic change of coordinate x = x(z) combined with the gauge transformation
ψ̃ = (dx/dz)−1/2ψ. Here, {x(z); z} is the Schwarzian derivative3. Observe that, in the
transformation law (1.20), the leading term Q0 of the potential function precisely satisfies
the transformation rule for quadratic differentials. Prove also that the formal series Podd

transforms as follows:

P̃odd(z, !) =
dx(z)

dz
Podd(x(z), !). (1.21)

Excercise 2. The Schrödinger-type ODE
(
!2 d2

dx2
−
(x2

4
− ν
))

ψ(x, !) = 0 (ν ∈ C∗) (1.22)

is called the Weber equation. Verify that Pm(x) = O(x−2) holds when |x| → +∞ if m ≥ 1 for
this equation. Furthermore, compute the integral along the path connecting two pre-images
∞± ∈ Σ of x = ∞ by π and check that

∫ ∞+

∞−

Pm(x) dx =

⎧
⎪⎨

⎪⎩

(1− 21−2k)B2k

2k(2k − 1)ν2k−1
if m = 2k − 1 is odd

0 if m = 2k is even,

(1.23)

holds for any m ≥ 1. Here, B2k is the Bernoulli number defined by

t

et − 1
= 1− t

2
+
∑

k≥1

B2k

(2k)!
t2k. (1.24)

3 Such objects that include the Schwarzian derivative in the transformation law are called projective connections (or sl2-opers).
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1.2 Stokes graph and Borel summability

To give a rigorous analytic realization of the previously constructed WKB solution, we uses
the so-called Borel summation method and Écalle’s resurgent analysis. See [30, 23, 86] for
details.

1.2.1 Brief review of Borel summation method

Suppose we have a compact set K such as in Proposition 1.6 and x varies on K. The Borel
transform of ψ± is defined to be its term-wise inverse Laplace transform4

Bψ±(x, ζ) = ψ±,B(x, ζ) =
∑

m≥0

ψ±,m(x)

Γ(m+ 1
2)
(ζ ± S(x))m− 1

2 , (1.25)

which converges thanks to the estimate (1.19). For any fixed x in K, this defines a germ of
(multi-valued) function on a punctured neighborhood of the point ζ = ∓S(x). If ψ±,B(x, ζ)
has an analytic continuation with respect to ζ to a domain containing the half line ∓S(x) +
R≥0, and growths at most exponentially when |ζ| → +∞, then the Laplace transform

Sψ±(x, !) =
∫ ∞

∓S(x)

e−ζ/!ψ±,B(x, ζ) dζ (1.26)

converges for 0 < ! ≪ 1. We also require that the convergence of the integral is uniformly
with respect to x ∈ K so that the resulting function (1.26) is also holomorphic in x. We
say that the WKB solution ψ± is Borel summable (as a series of !) on K if the properties
mentioned here are satisfied, and call the resulting function (1.26) the Borel sum of ψ±.

Excercise 3. Prove that the Borel transform ψAiry
±,B (x, ζ) of the WKB solution of the Airy

equation (1.16) can be explicitly written by the Gauss hypergeometric series 2F1 as follows:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ψAiry
+,B (x, ζ) =

√
3

2
√
π
x−1t−

1
2 2F1

(1
6
,
5

6
,
1

2
; t
)
,

ψAiry
−,B (x, ζ) =

√
3

2
√
π
x−1(t− 1)−

1
2 2F1

(1
6
,
5

6
,
1

2
; 1− t

)
,

(1.27)

where t = (ζ + S(x))/2S(x). (S(x) = 2x3/2/3 for this example). Prove also that ψAiry(x, !)
are Borel summable if Im x3/2 ̸= 0 is satisfied.

4Here we shift the lower endpoint of the Laplace integral to absorb the exponential factor:

e±S/!!α =

∫ ∞

∓S
e−ζ/! (ζ ± S)α−1

Γ(α)
dζ (Reα > 0).
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(a) Q(x) = x (b) Q(x) = x3 + x

oooooo

(c) Q(x) =
(x− 1)(x− 2)
x2(x+ 1)2

(d) Q(x) =
x+ 1
x

(e) Q(x) = x3 − x

oooo

(f) Q(x) =
x− 2
x2

Figure 1.1: Example of Stokes graphs.

1.2.2 Stokes graphs

Since the coefficients of the WKB solution are functions of x, its Borel summability does
depend on the position of x. The Stokes graph introduced here provides a criterion for
determining the Borel summability of the WKB solution.

Definition 1.7. The Stokes graph of the Schrödinger-type ODE (1.1) is a graph on x-plane
whose

• vertices are give by zeros and poles of Q(x), and

• edges are given by Stokes curves, which are real 1-dimensional curves emanating from
a turning point v defined by

Im

∫ x

v

√
Q(x′) dx′ = 0. (1.28)

The Stokes curves are nothing but the (horizontal) trajectories of the meromorphic quadratic
differential φ defined in (1.2). See [87, 19] for properties of these trajectories. The Stokes
graph is identical to the spectral network for a class S theory specified by φ (see [38, 39]).

Figure 1.1 shows some examples of Stokes graphs. The interior of each face of the Stokes
graph is called a Stokes region. In (e) and (f), we can observe that there exists a Stokes
curve connecting (possibly the same) turning points. Such a Stokes curve is called a saddle
connection (or a Stokes segment).
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1.2.3 Borel summability and sketch of proof

Now we can give the criterion of the Borel summability of the WKB solutions as follows.

Theorem 1.8. Assume that the Stokes graph of (1.1) does not contain saddle connection.
Then, the WKB solution ψ±(x, !) defined in (1.13) is Borel summable on each Stokes region.
Also, the Borel sum Sψ±(x, !) gives a holomorphic solution of the Schrödinger-type ODE
(1.1) on the Stokes region.

Theorem 1.8 was proved by several works including [29, 72, 77, 79]. Below, we will
very roughly explain why the trajectory of the quadratic differential φ(x) controls the Borel
summability, following the idea due to Koike–Schäfke. See also [90, §3] for more details.

First, we will investigate the Borel transform of an auxiliary series

T (x, !) =
∑

m≥1

!m+1Pm(x)
(
= !
(
P (x, !)− !−1P−1(x)− P0(x)

))
. (1.29)

The Riccati equation for P implies

2!−1
√
Q(x)T +

dT

dx
= −!−1T 2 − 2P0T − !

(
P 2
0 +

dP0

dx

)
. (1.30)

Now, let us change the local coordinate, known as the Liouville transformation, from x to z
defined by

z = z(x) =

∫ x

x∗

√
Q(x′) dx′ (1.31)

with a certain reference point x∗, and take the the Borel transform of the both sides. Since
the multiplication by !−1 is translated into the derivative ∂ζ for the Borel transform, we have

(
2
∂

∂ζ
+

∂

∂z

)
TB(z, ζ) = A1(z)

∂

∂ζ
TB ∗ TB(z, ζ) + A2(z)TB(z, ζ) + A3(z), (1.32)

where ∗ is the convolution product with respect to ζ, and

A1 = − 1√
Q
, A2 = − 2P0√

Q
, A3 = − 1√

Q

(
P 2
0 +

dP0

dx

)
. (1.33)

By performing further computations, we can find the following integro-differential equation
for TB:

TB(z, ζ) =

∫ ζ

0

A1

(
z − ζ − t

2

)
∂

∂ζ
TB ∗ TB

(
z − ζ − t

2
, t

)
dt

+

∫ ζ

0

A2

(
z − ζ − t

2

)
TB

(
z − ζ − t

2
, t

)
dt+

∫ ζ

0

A3

(
z − ζ − t

2

)
dt. (1.34)

Koike–Schäfke’s approach is to show the existence of analytic continuation of TB with respect
to ζ along the positive real axis by using the equation (1.34). Our TB is the holomorphic
solution near ζ = 0 satisfying

TB(z, 0) = 0,
∂TB

∂ζ
(z, 0) = P1. (1.35)
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Now, let us ask if TB(z(x∗), ζ) can be analytically continued along the positive real axis on
ζ-plane. In this process, the point to be noted is that Ai has singularities at turning points.
From the expression z−(ζ−t)/2 included in the equation (1.34), it is clear that to investigate
the analyticity with respect to ζ, it is necessary to understand the analyticity with respect to
z. As ζ moves in the positive direction along the real axis (with t being satisfying 0 ≤ t ≤ ζ),
z− (ζ− t)/2 moves in the direction where the real part decreases while keeping its imaginary
part. Since z is defined by the Liouville transformation equation (1.31), the condition that
“the negative part of the trajectory of ψ through x∗ does not flow into the turning point”
becomes essential in proving the existence of analytic continuation. This is the reason that
allows us to determine the Borel summability of the WKB solution using the Stokes graph.
After performing these investigations, it is necessary to construct a sequence of successive
approximations for the integral equation (1.34) and perform various estimates to prove its
convergence. The explanation of these technical aspects will be omitted here.

Once we have constructed the Borel sum of T (x, !) on the complement of the Stokes graph,
then one can consider the Borel summability of

∫ x

x0
T (x′, !) dx′. The path of integration

can hits several Stokes curves provided if it can be decomposed into a number of paths
which are contained in Stokes regions (see the figure below). Then, we can verify that the∫ x

x0
T (x′, !) dx′ becomes Borel summable since the integrant is Borel summable at any point

on the modified path. However, such a deformation is impossible if the original path has non-
trivial intersection with saddle connections5. This is the reason why the saddle connection
gives an obstruction for the Borel summability of WKB solutions (see also Exercise 4 below).

5In fact, we can relax the assumption in Theorem 1.8. That is, even if there exist saddle connections, the WKB solution is
Borel summable if the path of integration in (1.13) from x0 to x never intersect with saddle connections.

9
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Excercise 4. Let W (!) be the generating series6 of the integrals considered in Exercise 2:

W (!) =
∑

k≥1

(1− 21−2k)B2k

2k(2k − 1) ν2k−1
!2k−1 (ν ∈ C∗). (1.36)

(1) Compute the Borel transform of W and verify that it is not Borel summable when a
saddle connection exists in the Stokes graph of the Weber equation (1.22).
(The situation occurs iff ν ∈ iR ̸=0.)

(2) Show that the Stokes automorphism S (c.f., [30, 86]) acts on eW as follows:

SeW =

{
eW (1 + e2πiν/!) if ν ∈ iR>0,

eW (1 + e−2πiν/!)−1 if ν ∈ iR<0.
(1.37)

1.3 Connection formulas on Stokes curves

In general, the exact solutions of the Schrödinger-type ODE (1.1) constructed by the Borel
summation method in the previous subsection differ across Stokes regions. In this section,
we will see the connection formulas that describe how these Borel sums are related.

1.3.1 Voros connection formula around a simple turning point

Here, we will see the connection formulas around the turning points that arise as simple zeros
of φ(x). First, I will describe the setup.

Assumption 1.9.

• Let v is a simple zero of φ(x), and C be a Stokes curve emanating from v which forms
a common boundary of two adjacent Stokes regions I and II. From v, region II appears
next to region I in the counter-clockwise direction (see the figure below).

• The Stokes graph of (1.1) does not contain any saddle connection.

6This is one of the “Voros period” of the Weber equation (1.22) (for a relative cycle on the spectral curve). We also note the
Bernoulli number is related to the Euler characteristic of the moduli space Mg of genus g Riemann surfaces through topological
recursion/quantum curve correspondence. See [45, 83, 55, 56] for more details.
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In order to write down the connection formulas, we must fix a normalization of the WKB
solution. Here, we adopt the normalization that takes the turning point v at the lower
endpoint7 in the integral in (1.13):

ψ±(x, !) =
1√

Podd(x, !)
exp

(
±
∫ x

v

Podd(x, !) dx
)
. (1.38)

We also denote by ΨJ
± the Borel sum of ψ± defined in the Stokes region J = I, II. Then we

have the following.

Theorem 1.10 ([92], [69]). Under the above setting, the analytic continuation of ΨI
± to the

Stokes region II across the Stokes curve C is described as

(ΨI
+,Ψ

I
−) = (ΨII

+,Ψ
II
−) · S,

S =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
1 0

i 1

)
if

∫ x

v

√
Q(x) dx > 0 on C,

(
1 i

0 1

)
if

∫ x

v

√
Q(x) dx < 0 on C.

(1.39)

This is what we call the Voros connection formula around a simple turning point. This
formula can also be understood as explicitly describing the Stokes phenomenon for the di-
vergent series in ! (and this is the origin of the name “Stokes graph”). In the case of the
Airy equation, this connection formula can be derived by analyzing the Borel singularity;
the formula (1.39) follows from several properties of hypergeometric functions (c.f., Exercise
3). The formula for a general Schrödinger-type equation (1.1) is rigorously proven using the
“exact WKB-theoretic transformation” to the Airy equation. For details, please refer to [69,
Theorem 2.23].

Excercise 5. Show that the Borel sum of the WKB solutions are single-valued around any
simple zero v of Q(x).

1.3.2 Relation to the path-lifting rule of Gaiotto–Moore–Neitzke

Here we give an alternative description of the Voros connection formula.
Assume that we are in the same situation as the previous subsection, and further assume

that
∫ x

v

√
Q(x′) dx′ > 0 holds on C. Then, the formula (1.39) for ψ+ is equivalent to

ΨI
+ = ΨII

+ + Ψ̃II
−, (1.40)

where the second term is the Borel sum of the WKB solution obtained as the term-wise
analytic continuation of ψ+ along the “detoured path” depicted below. Since the path crosses
the branch cut and terminates at the different sheet, we put the subscript − for the resulting
WKB solution. The description is equivalent to the path-lifting rule, which was named in
their study of (non-)abelianization by Gaiotto–Moore–Neitzke [39].

7Although the coefficients of Podd has singularity, the integral with the endpoint v can be defined by means of a contour
integration. See [69, §2] for details.
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1.3.3 Koike connection formula around a simple pole

It was shown by Koike that a similar connection formula holds on Stokes curves emanating
from simple poles ([71]). Below, we will briefly recall this formula. It should be noted that
when describing this formula, it is possible to add correction terms in ! to the potential
function Q(x). This is because, from the perspective of exact WKB analysis, a simple pole is
interpreted as a turning point, while it is a regular singular point of (1.1) from the perspective
of differential equations. Here, I will present the general formula that allows for the correction
term.

Assumption 1.11.

• The potential function Q in (1.1) takes the form

Q = Q0(x) + !2Q2(x), (1.41)

where Q0(x) has a simple pole at v, while Q2(x) has at most double pole there.

• Let C be a Stokes curve emanating from v which forms a common boundary of two
adjacent Stokes regions I and II. From v, region II appears next to region I in the
counter-clockwise direction (see the figure below).

• The Stokes graph of (1.1) does not contain any saddle connection (c.f., Remark 1.3).

As well as the Voros connection formula, we take the WKB solution ψ± normalized at v,
which is defined by exactly the same manner as (1.38). Then we have the following.
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Theorem 1.12 ([71]). Under the above setting, the analytic continuation of ΨI
± to the Stokes

region II across the Stokes curve C is described as

(ΨI
+,Ψ

I
−) = (ΨII

+,Ψ
II
−) · S,

S =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
1 0

2i cos(π
√
1 + 4λ) 1

)
if

∫ x

v

√
Q(x) dx > 0 on C,

(
1 2i cos(π

√
1 + 4λ)

0 1

)
if

∫ x

v

√
Q(x) dx < 0 on C,

(1.42)

where
λ = lim

x→v
(x− v)2Q2(x). (1.43)

Excercise 6. Prove the connection formula (1.42) for the Schrödinger-type ODE (1.1) with
the potential

Q(x) =
1

x
+ !2 λ

x2
. (1.44)

(The is a special case of the Bessel equation. We can describe the Borel transform of the
WKB solution (1.38) by the Gauss hypergeometric series as well as the Airy equation; c.f.,
Exercise 3.)

1.4 Description of monodromy/Stokes matrices via Voros periods

The connection formulas discussed in the previous subsection are highly effective for analyzing
the global properties of solutions to differential equations. Here, we will briefly explain the
content of [69, §3], specifically the calculation of the monodromy matrix/Stokes matrix using
the period integrals, which we call the Voros periods, on the spectral curve Σ.

Here, I will introduce the result of calculating the Stokes matrix around the irregular
singular point x = ∞ for the Weber equation (1.22). This example is quite simple, and the
Stokes matrix can be calculated without using the theory of exact WKB analysis. However,
from the perspective of understanding how the period integrals arise, it is also an essential
example. The monograph [69, §3] addresses more nontrivial examples that truly require the
theory of exact WKB analysis, so we recommend referring to it as well.

For simplicity, we consider the case ν ∈ R>0. In this case, the Stokes graph of the Weber
equation (1.22) is given in Figure 1.2. x = ∞ is an irregular singular point of Poincaré rank 2,
with four singular directions. These correspond to the directions in which the Stokes curves
asymptotically approach. For example, finding the Stokes matrix for the singular direction
arg x = π/2 is equivalent to determining the connection matrix between the Stokes regions I
and III. Let’s carry this out.

Here we take the WKB solutions normalized at x = v1 = +2
√
ν:

ψ±(x, !) =
1√

Podd(x, !)
exp

(
±
∫ x

v1

Podd(x, !) dx
)
. (1.45)
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Figure 1.2: The Stokes graph of the Weber equation (1.22).

In computing the analytic continuation from the region I to III passing through II, we will
use the Voros formula twice. At the first crossing, we can simply use Theorem 1.10:

(ΨI
+,Ψ

I
−) = (ΨII

+,Ψ
II
−) ·

(
1 i
0 1

)
. (1.46)

In discussing the connection problem at the second crossing, a care must be taken with the
normalization of the WKB solution. Note that Theorem 1.10 is valid if the WKB solution
is normalized at the turning point. In order to apply Theorem 1.10 at the second crossing
point, it is necessary to take the WKB solution

ψ̃±(x, !) =
1√

Podd(x, !)
exp

(
±
∫ x

v2

Podd(x, !) dx
)

(1.47)

normalized at the turning point v2 where the Stokes curve, which we are attempting to cross,
emanates. When replacing the lower endpoints of the integration in the WKB solution, the
exponential of the period integral emerges as an overall factor as follows:

ψ±(x, !) = exp

(
1

2
Vγ(!)

)
ψ̃±(x, !), Vγ(!) =

∮

γ

Podd(x, !) dx. (1.48)

Here, γ is the closed cycle (which represents a class in H1(Σ;Z)) which encircles turning
points v1 and v2. We note that the series Vγ is also Borel summable if the Stokes graph
does not contain any saddle connection (see Footnote 5). Since Theorem 1.10 is valid for the
WKB solution ψ̃± on the second crossing point, we have the following formula for ψ±:

(ΨII
+,Ψ

II
−) = (ΨIII

+ ,ΨIII
− ) ·

(
1 ieVγ

0 1

)
, (1.49)
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where Vγ is the Borel sum8 of Vγ. As a conclusion, we have the following resulting connection
formula between I to III:

(ΨI
+,Ψ

I
−) = (ΨIII

+ ,ΨIII
− ) ·

(
1 i(1 + eVγ )
0 1

)
. (1.50)

Thus we have obtained an explicit expression of the connection matrix for the WKB solution
which can be compared with the Stokes matrix of the Weber equation known in literatures.

Remark 1.13. The Stokes matrix of the Weber equation (1.22) computed above is different
from the one in literatures. In many references, in computing the Stokes matrix around
an irregular singular point, a formal solution expanded at the the irregular singular point
is typically used; however, we adopted a different normalization as in (1.45). To compare
(1.50) with those results, we should take the WKB solution ψ±,∞ normalized at x = ∞, and
the difference from (1.45) is given by an alternative integral of Podd which was considered
already in Exercise 2 and 4:

ψ±(x, !) = e
1
2W (!)ψ±,∞(x, !). (1.51)

The Borel sum of eW , given by the Γ-function, appears in the expression of the Stokes
matrices of ψ±,∞, and the formula should be comparable the ones in literatures.

As we have seen, the period integral of Podd dx naturally appears in the expression as
a consequence of multiple use of the Voros connection formula. This is also true for more
general examples. Those periods are crucially important objects not only in the exact WKB
method, but also in the theory of ordinary differential equations on the complex domain.

Definition 1.14. The formal series defined by the period integral9

Vγ(!) =
∮

γ

Podd(x, !) dx (γ ∈ H1(Σ
′,Z)) (1.52)

is called the Voros period for the cycle γ.

In summary, we have

Theorem 1.15 ([69, §3]; see also [85]). Suppose that the Stokes graph of the Schrödinger-
type ODE (1.1) doesn’t contain any saddle connection. Then, the monodromy matrices and
Stokes matrices of (1.1) are explicitly described by the Borel sum of the Voros periods.

The spectral curve of the Weber equation (1.22) discussed above is of genus zero. As
a result, the Voros period expressed in the aforementioned formula (1.50) can actually be
written explicitly as the residue at x = ∞ (c.f., Footnote 8). However, in general, when the
spectral curve has large genus, the Voros period becomes the generating function of (hyper-)
elliptic integrals, and the entries of the monodromy matrix, described as the Borel sum of
them, become highly transcendental objects.

8 In this Weber example, Vγ is simply given by 2πiν/! up to sign, so we do not have take the Borel sum.
9There are several names for this object. It is also called quantum period, all-order Bohr–Sommerfeld period, spectral

coordinates, etc.
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Excercise 7. Let us consider the Schrödinger-type ODE (1.1) with an !-depending potential

Q = Q0(x) + !Q1(x) + !2Q2(x) (1.53)

and assume that each Qi(x) has order 2 pole at x = 0 (i.e., x = 0 is a regular singular point).

(1) For each m ≥ −1, prove that P (±)
m (x) has a pole at x = 0 of order at most 1.

(2) Prove that the residues

ρ(±)(!) = Res
x=0

P (±)(x, !)dx
(
=
∑

m≥−1

!m Res
x=0

P (±)
m (x)dx

)
(1.54)

are convergent series of ! and gives the characteristic exponents of (1.1) at x = 0 (namely,
the eigenvalues of local monodoromy matrix around x = 0 is given by exp(2πiρ(±)(!))).

1.5 Comments and other topics related to Part I

• The note has dealt only with Schrödinger-type ODEs, but part of the theory of the exact
WKB analysis has also been extended to higher-order ODEs of the following form:

(
!n dn

dxn
+ q1(x)!n−1 dn−1

dxn−1
+ · · ·+ qn−1(x)!

d

dx
+ qn(x)

)
ψ(x, !) = 0. (1.55)

Unlike the second-order case, it has been shown by Berk–Nevins–Roberts ([11]), that
discontinuities in the WKB solutions can occur even on new Stokes curves that do not
originate from turning points. Building on considerations of [11], Aoki–Kawai–Takei
proposed a candidate for the Stokes graph of higher-order ODEs [3, 4] (see also [50]).
However, a general theorem on the Borel summability of WKB solutions has not yet been
established. Giving a rigorous proof of Borel summability and connection formulas, as
well as extending the results shown in this note to higher-order ODEs, remain significant
and challenging research problems. (Recently, related results were announced in [78].)

• The (candidate of) Stokes graphs of higher-order ODEs were rediscovered in the study of
BPS states by Gaiotto–Moore–Neiztke in [39], and are also known as spectral networks.
They also proposed the notion of (non-)abelianization; a relation between an SLn(C)-
connection on the base x-plane and a GL1(C)-connection on the n : 1 covering ([39, 47]).
When n = 2, this can be understood as the geometric formulation of the result of
Theorem 1.15. See [47, 46, 49] for more applications.

• In Exercise 4, we confirmed through explicit calculations that when a saddle connection
appears, a discontinuity in the Borel sum, i.e., the Stokes phenomenon, occurs. In fact,
similar discontinuities generally happens, as shown in the research in [92, 27] etc., and
the associated Voros period satisfies a formula, known as the Delabaere–Dillinger–Pham
(DDP) formula, that is very similar to (1.37). In fact, the DDP formula has a close
relationship with the (generalized) cluster algebras, higher Teichmüller theory and BPS
structures. See [38, 39, 19, 60, 61, 18, 7, 6] for more details.
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2 Part II : Application to Painlevé Equations

The fact that the exact WKB analysis is effective in describing monodromy naturally leads to
exploring its application to Painlevé equations through the theory of isomonodromy deforma-
tions of linear ordernary differential equations. In this Part II, we introduce how the general
(formal) solutions of the Painlevé equations can be constructed by combining the ideas of the
exact WKB method with the theory of topological recursion and quantum curves. Unfortu-
nately, the Borel summability of the constructed formal solutions has not yet been proven.
We will propore a conjectural formula on the resurgent structure in the end of this note.

2.1 Brief review of Painlevé equations

Painlevé equations (PJ) (J ∈ {I, . . . ,VI}) are a class of non-linear ODEs discovered by
Painlevé and Gambier in their classification of ODEs with “Painlevé property” which re-
quires the single-valuedness of general solutions away from fixed singular points ([84]; see
also [22]). Painlevé equations have commonly nice properties: Hamiltonian description,
affine-Weyl symmetry, existence of τ -function, description as isomonodoromy deformation,
and connections with mathematical physics.

In this note, we mainly consider the simplest one, called the first Painlevé equation10:

(PI) : !2d
2q

dt2
= 6q2 + t. (2.1)

Below, we will review some of aforementioned properties which is relevant to this note.

2.1.1 Isomonodromy deformation and τ-function

All Painlevé equations describe a compatibility condition of a certain system of linear PDEs
(c.f., [63]). For the case of (PI), the system is given as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(LI) :

[
!2 ∂

2

∂x2
− !

x− q

(
! ∂
∂x

− p
)
− (4x3 + 2tx+ 2H)

]
ψ = 0,

(DI) :

[
! ∂
∂t

− 1

2(x− q)

(
! ∂
∂x

− p
)]

ψ = 0,

(2.2)

where

H =
p2

2
− 2q3 − tq. (2.3)

The compatibility condition of the system (2.2) of PDEs is given by the Hamiltonian system

!dq
dt

=
∂H

∂p
, !dp

dt
= −∂H

∂q
, (2.4)

10The original Painlevé equations do not have !-dependence and can be obtained by simply setting ! = 1. We put the
parameter ! to apply the exact WKB method. It can be added through a rescaling of variables, and hence, analysis for small
! is related to analysis for large t in the original variable. There are many studies on large t asymptotics of Painlevé I; see [37]
for example.
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which is equivalent to (PI).
(LI) is a linear ODE with irregular singular point at x = ∞. The expression (2.3) of

H gurantees that x = q is an apparent singularity of (LI); that is, all solution has no
monodoromy around the point. Therefore, the Stokes multipliers around x = ∞ become the
essential monodromy (Stokes) data of (LI). When the system (LI) & (DI) are compatible,
the Stokes multipliers of the fundamental solutions remain independent of t, providing the
conserved quantities of (PI). In fact, one can show that only two of the Stokes multipliers
are independent (see (2.33) below), and they parameterize the general solution of (PI). Such
the existence of enough numbers of conserved quantity can be understood as an integrability
of Painlevé equations. For example, [65, 70, 37] provides a detailed analysis of the behavior
of solutions to the Painlevé equations using the t-independence of the monodromy/Stokes
datra and the Riemann-Hilbert method.

For a given solution q(t) of (PI), the associated τ -function τ(t) is defined (up to constant)
as a function satisfying

!2 d
dt

log τ(t) = H(t), (2.5)

where the right hand side is the corresponding Hamiltonian function (2.3). It is known that
τ(t) is an entire function even though the solution q(t) is meromorphic. The relationship be-
tween a solution of (PI) and the τ -function is quite analogous to that between the Weierstrass
elliptic function and σ-function (ϑ-function).

Excercise 8.

(1) Derive the equation (2.4) from the compatibility condition of the system (2.2).

(2) Suppose that a ∈ C is a pole a solution q(t) of (PI). Compute the first several terms of
the Laurent series expansion of q(t) at t = a, and observe that the coefficient of (t− a)4

can be chosen as an arbitrary constant. Also, observe that the Hamiltonian function
H(t) behaves as

H(t) =
!2

t− a
(1 +O(t− a)) (2.6)

when t → a, and the corresponding τ -function has a simple zero at a.

2.1.2 An observation on the spectral curve from the exact WKB perspective

As we have seen in the previous subsection, the Stokes multipliers of (LI) become key to
analyzing the properties of the general solutions of (PI). When attempting to describe those
based on the ideas of the exact WKB analysis, it is expected that the period integrals (Voros
periods) on the spectral curve

y2 = 4x3 + 2tx+ 2“H|!=0” (2.7)

of (LI) will describe those Stokes multipliers.
However, certain issues arise here. Since H is expressed using the solution of (PI), it is

necessary to understand the behavior of the solution of (PI) as ! → 0 before describing the
spectral curve. But, there is no guarantee that the function H has a finite limit as ! → 0,
making it difficult to start from (2.7).
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Let us shift our perspective here. If some meaning could be attached to “H|!=0” mentioned
above, equation (2.7) would define a family of elliptic curves with the independent variable t
of (PI) as the deformation parameter. By specifying the A-cycle and B-cycle on these curves,
the period integrals of y dx along these cycles are expected to describe the two independent
Stokes multipliers as the leading term of the Voros periods. Therefore, if the Stokes multiplier
of (LI) are independent of t, the elliptic curve should be deformed so that the periods of y dx
remain independent of t. However, since t already appears in the coefficients of equation
(2.7), it is impossible to deform the elliptic curve so that all periods of y dx are independent
of t, which presents a problem with this approach as well.

Therefore, (hoping that the B-cycle can be dealt with later,) let’s first consider a defor-
mation family of elliptic curves such that only the period integral of y dx along the A-cycle
is independent of t:

ΣPI : y2 = 4x3 + 2tx+ u(t, ν). (2.8)

This is a family of elliptic curves obtained by imposing the condition

ν =
1

2πi

∮

A

y dx (2.9)

with another parameter ν that is independent of t. The equality (2.9) defines u(t, ν) locally
as an implicit function. In fact, this family of elliptic curves is the correct object to consider
when constructing the general solution of (PI), as will be explained in subsequent sections.

2.2 Construction of Painlevé τ-functions by topological recursion

Based on the idea described in the previous subsection, can we construct a differential equa-
tion whose spectral curve is the elliptic curve ΣPI? If such a construction is possible, then
(assuming we can temporarily ignore the issue of t-dependence of the B-period of ydx) it
would be close to (LI). In fact, it will be shown that this objective can be achieved by the
topological recursion and quantum curves.

2.2.1 Topological recursion for ΣPI

Following [52], let us we apply the topological recursion to our specific example ΣPI . For the
general formalism of the topological recursion, see [35, 36, 31] for details.

First, we regard (2.8) as an initial data of the topological recursion:

C = C/L, x = ℘(z), y =
d℘

dz
(z). (2.10)

Here, L = ZωA + ZωB is the lattice of periods of dx/y on ΣPI , and ℘(z) is the associated
Weierstrass ℘-function. We have already specified the A-cycle and B-cycle in the previous
subsection, and the corresponding Bergman bidifferential is given by

B(z1, z2) =

(
℘(z1 − z2) +

ηA
ωA

)
dzdz2. (2.11)
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The ramification points are given by half periods

R =

{
ωA

2
,
ωB

2
,
ωA + ωB

2

}
, (2.12)

and σ(z) ≡ −z (modL) gives the local involution around the ramification point.
Let Wg,n(z1, . . . , zn) be the correlators defined by the topological recursion. Namely,

W0,1(z) = y(z) dx(z), W0,2(z1, z2) = B(z1, z2), (2.13)

Wg,n+1(z0, z1, . . . , zn) =
∑

r∈R

Res
z=r

∫ w=z

w=σ(z)W0,2(z0, w)

2
(
y(z)− y(σ(z))

)
dx(z)

Rg,n(z, z1, . . . , zn)

Rg,n(z, z1, . . . , zn) = Wg−1,n+1(z, σ(z), z1, . . . , zn)+
′∑

g1+g2=g
I⊔J={1,...,n}

Wg1,1+|I|(z, zI)Wg2,1+|J |(σ(z), zJ),

(2.14)
where the prime symbol ′ means that no W0,1 appears in the summation. We also define

Fg =
1

2− 2g

∑

r∈R

Res
z=r

(∫ z

W0,1(z)

)
Wg,1(z) (2.15)

for g ≥ 2. F0 and F1 are defined but in an alternative way:

F0 =
tu

5
+
ν

2

∮

B

ydx, F1 = − 1

12
log(ω6

AD), (2.16)

where D = −8t3 − 27u2 is the discriminant. See [35] for properties of ωg,n and Fg.

2.2.2 Quantum curve and its formal monodromy

Let us introduce the following two generating series

Z(t, ν, !) = exp

(
∑

g≥0

!2g−2Fg(t, ν)

)
(2.17)

and

χ±(x, t, ν, !)

= exp

(
∑

g≥0,n≥1

(±!)2g−2+n

n!

∫ z(x)

0

· · ·
∫ z(x)

0

(
Wg,n(z1, . . . , zn)− δg,0δn,2

dx(z1)dx(z2)

(x(z1)− x(z2))2

))
,

(2.18)

where z(x) is a local inverse function of x = ℘(z). The first one is called the perturbative
partition function, while the second one is called the perturbative wave function. Both of
them are named as “function”, but they are divergent series of ! in general. (The Borel
summability is not rigorosuly proved so far.)
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We can show

Theorem 2.1 ([52, Theorem 3.7 and 3.9]).

(i) χ± is a WKB solution of the following PDE:
[
!2 ∂

2

∂x2
− 2!2 ∂

∂t
−
(
4x3 + 2tx+ 2!2∂F

∂t
(t, ν, !)

)]
χ±(x, t, ν, !) = 0, (2.19)

where F (t, ν, !) =
∑

g≥0 !2g−2Fg(t, ν) (= logZ(t, ν, !)) is the total free energy.

(ii) The term-wise analytic continuation of χ± along A-cycle and B-cycle are described by

χ±(x, t, ν, !) )→

⎧
⎪⎪⎨

⎪⎪⎩

e±2πiν/! χ±(x, t, ν, !) along A-cycle,

Z(t, ν ± !, !)
Z(t, ν, !) χ±(x, t, ν ± !, !) along B-cycle.

(2.20)

The equation (2.19) is a PDE, and its WKB solutions have not been introduced in this
note. However, noting that the !2 is multiplied with the partial derivative with respect to t,
it is possible to derive a recursion relation for the coefficients of the WKB-type formal series
solution, which is similarly to the method described in §1.1.1. The claim (i) is proved by com-
paring the recursion relation with the topological recursion. The claim (ii) is a consequence
of the variation formulas in topological recursion (c.f., [35, §5])

It is not difficult to see that the classical limit of the PDE (2.19) is idential to the spectral
curve ΣPI . Hence, we call the PDE (2.19) the perturbative quantum curve. As we expected,
the perturbative quantum curve takes a form similar to the isomonodromic linear ODE (LI),
but they do not exactly match.

Since ν is a parameter independent of t, we were able to construct a differential equa-
tion whose formal monodromy (i.e., term-wise analytic continuation) along the A-cycle is
t-independent, as initially intended. However, the formal monodromy along the B-cycle is
described using difference operators, making it quite complicated. In the next subsection, we
will introduce a method to convert such an operator-valued monodromy into a t-independent
actual monodromy to obtain an “isomonodoromoic” object.

2.2.3 Construction of the τ-function via discrete Fourier transform

In 2012, Gamayun–Iorgov–Lisovyy constructed the τ -function for the 6-th Painlevé equation
(PVI) using the conformal field theory in [40]. They asserted that the τ -function associated
with the general solution of (PVI) can be constructed through the discrete Fourier transform
of the conformal block, and this important formula is now known as the Kyiv formula. Mean-
while, Iorgov–Lisovyy–Teschner, in [51], examined the analytic continuation of the conformal
block (with the insertion of a degenerate field) and provided a proof of the Kyiv formula.
The key fact here was that “the discrete Fourier transform reduces the shift operator-valued
monodromy to an actual monodromy”; this provides a clear explanation of why the Kyiv
formula of [40] is formulated with the discrete Fourier transform!
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In what follows, we will apply this idea to our perturbative wave function11. Namely, let
us consider the discrete Fourier transform of χ± with respect to the parameter ν to define

ψ±(x, t, ν, ρ, !) =
∑

k∈Z e
2πikρ/!Z(t, ν + k!, !)χ±(x, t, ν + k!, !)∑

k∈Z e
2πikρ/!Z(t, ν + k!, !) , (2.21)

which we call the non-perturbative wave function ([34]). Here ρ is a parameter, which is
Fourier dual to ν, assumed to be t-independent. Actually, the formal series are not a usual
power series in !, but can be regarded as a two-sided trans-series (which contain both pos-
itive and negative exponential factors). These exponential terms can be summed up to ϑ-
functions. The discrete Fourier transform can be regarded as a non-perturbative correction
to the perturbative series. See [34, 52] for details.

The previous formal monodromy property (2.20) implies that the term-wise analytic con-
tinuation of ψ± becomes

ψ±(x, t, ν, ρ, !) )→
{
e±2πiν/!ψ±(x, t, ν, ρ, !) along A-cycle,

e∓2πiρ/!ψ±(x, t, ν, ρ, !) along B-cycle.
(2.22)

In view of the property (2.22), it is natural to define the Voros periods of the non-perturbative
wave function along A-cycle and B-cycle by 2πiν and 2πiρ, respectively, even though the
parameter ρ is not an actual period integral on the spectral curve. Based on the idea of
the exact WKB method, which states that “the Voros periods are fundamental quantities
that describe the monodromy/Stokes data”, it is natural to expect that ψ± satisfies an
isomonodromy system. In fact, one can prove the following.

Theorem 2.2 ([52, Theorem 4.3 and 4.7]). The non-perturbative wave function ψ± given in
(2.21) is a formal solution of the isomonodromy system (LI) & (DI) associated with the first
Painlevé equation (PI), where q and p in the system (LI) & (DI) are given by

q(t, ν, ρ; !) = −!2 d
2

dt2
log τ(t, ν, ρ, !), p(t, ν, ρ; !) = −!3 d

3

dt3
log τ(t, ν, ρ, !) (2.23)

with
τ(t, ν, ρ, !) =

∑

k∈Z

e2πikρ/!Z(t, ν + k!, !). (2.24)

Consequently, (2.24) gives a formal series-valued τ -function for (PI).

The series of the form (2.24) was first introduced by Eynard–Marinõ in [34] as the non-
perturbative partition function. Theorem 2.2 can be simply summarized as

“non-perturbative quantum curve is the isomonodoromy system”.

We also note that it has already been proved by Eynard–Garcia-Failde–Marchal–Orantin
that the τ -functions for other all Painlevé equations can be constructed from the topological
recursion in the same manner described above ([32, 80, 33]; see also some related results
[57, 62, 13, 58]).

11By a chain of dualities in theoretical physics, it is expected that our perturbative wave function χ± is related to the conformal
block with a degenerate field insertion. See [74, 9] for some observations about the dualities.
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So far, we have not discussed the Borel summability of χ±, Z and the convergence of the
Fourier series. Thus, while remaining at the level of formal series, we have constructed a
τ -function for (PI) which containing two arbitrary parameters (ν, ρ) by using the topological
recursion and discrete Fourier transform, as a topological recursion/exact WKB analogous
of the Kyiv formula.

Remark 2.3. Aoki–Kawai–Takei also constructed a class of 2-parameter formal solution of
the Painlevé equations in [8, 68, 88], where they used the so-called multiple-scale analysis.
For example, their 2-parameter solution of (PI) takes the form

q(t,α, β, !) = q0(t) +
∑

ℓ≥1

!ℓ/2qℓ/2(t,α, β, !), (2.25)

where q0(t) =
√
−t/6, and the terms qℓ/2(t,α, β, !) are functions of t and ! containing two

free parameters α, β. The first few terms are of the form

q1/2 = αa1(t)e
ϕ(t)/! + βa−1(t)e

−ϕ(t)/!,

q1 = α2a2(t)e
2ϕ(t)/! + αβa0(t) + β2a−2(t)e

−2ϕ(t)/!, . . .

with a certain functions ϕ(t), ai(t) (see [69, §4] for their explicit expressions).
This formal solutions were also considered in [41], and studied more extensively in [1,

26, 10, 91] etc. from the viewpoint of resurgence. In particular, the work [10] establishes a
relation between our parameters (ν, ρ) and (α, β) appearing above, and hence, the resurgent
structure which we will discuss in the next section should be able to compared with those
previous results.

2.3 From Painlevé equation to resurgent structure in topological recursion

Here we discuss about an expected resurgent structure of the formal (non-perturbative) series
constructed in the previous section. Our strategy is, in studying the resurgent structure of
perturbative/non-perturbative partition function, to use the the Stokes multipliers of (LI),
which is the conserved quantities for the solution of (PI). In the computation, we will employ
the exact WKB method which was reviwed in Part I. A huge difference from Part I is
that, since our perturbative quantum curve (2.19) is a PDE, no rigorous theorem about the
Borel summability and connection formulas, such as Theorem 1.8, 1.10 and 1.12, has been
established.

However, in [52, 59], by assuming that the arguments discussed in Part I are applicable
to our quantum curve, we were able to derive an explicit formula for the resurgent structure.
Moreover, it turns out that, surprisingly, the formulas obtained by the method perfectly
match with results obtained through a completely different approaches. Let us conclude
this note by discussing these intriguing observations (with the hope that those will become
rigorous mathematical theorems in the near future).

2.3.1 Conjectures on Borel summability and connection formulas

Let us take the meromorphic quadratic differential

φ(x) = (4x3 + 2tx+ u(t, ν)) dx2. (2.26)
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Figure 2.1: Stokes graphs of φ when t varies near the negative real axis. In this figure, we have chosen
tc = −5, ϵ = 1/2, and ν = 1.

associated with the spectral curve ΣPI . Figure 2.1 shows Stokes graphs for some values of t
and u(t, ν), where we have chosen A-cycle and B-cycle as is shown in the middle figure.

The main conjectural ansatz for the following discussion is

Conjecture 2.4 ([52, §5]).

(i) If the Stokes graph does not contain any saddle connection, then the perturbative par-
tition function (2.17) is Borel summable. Moreover, the discrete Fourier series

T (t, ν, ρ, !) =
∑

k∈Z

e2πikρ/!Z(t, ν + k!, !) (2.27)

converges and gives an analytic τ -function of (PI). Here, Z is the Borel sum of the
partition function Z.

(ii) Under the same saddle-free condition, the perturbative wave function χ± is Borel summable
on each Stokes region. Moreover,

Ψ±(x, t, ν, ρ, !) =

∑

k∈Z

e2πikρ/! Z(t, ν + k!, !)X±(x, t, ν + k!, !)
∑

k∈Z

e2πikρ/! Z(t, ν + k!, !)
(2.28)

converges and give an analytic solution of the isomonodromy system (LI) & (DI) on the
Stokes region. Here, X± is the Borel sum of χ±.

(iii) Under the same saddle-free condition, the Borel sums X± defined on adjacent Stokes
regions are related by the Voros connection formula (or the path-lifting rule).

The claim (i) is consistent with the conjectures of [28, 43, 42], while the claims (ii), (iii)
are inferred from the results explained in Part I of this note. For a class of genus 0 spectral
curves, the conjecture is proved rigorously in [53, 54] where the quantum curve becomes an
ODE which can be rigorously handled within the general framework introduced in Part I.
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Now, since a saddle connection appears on the B-cycle when t lies on the negative real
axis (say t = −5 as in Figure 2.1), we may expect:

• The Borel transform of the perturbative partition function has a singularities on the
Borel plane at (integer multiples of) the B-periods

∮
B ydx.

• The singularity causes a certain Stokes jump when t crosses the negative real axis.

The main goal of the rest of this note is to derive an explicit formula which describes the action
of the Stokes automorphism. The resulting formula will be provided in the last subsection,
and as a step towards the goal, we will first describe the Stokes multipliers of (LI) which are
preserved under the variation of t.

2.3.2 Computing Stokes multipliers of (LI)

In what follows, we assume that the claims (i)–(iii) in Conjecture 2.4 are true. Under the

assumption (ii), we have five canonical solutions Ψ(j)
± defined in the Stokes region Dj in

Figure 2.1 (j = 0,±1,±2 mod 5). Then, we define the Stokes matrix Sj attached to the j-th
singular direction arg x = 2πj/5 by

(Ψ(j)
+ ,Ψ(j)

− ) = (Ψ(j+1)
+ ,Ψ(j+1)

− ) · Sj. (2.29)

We also define the Stokes multiplier sj as the non-trivial off-diagonal entry of Sj.
The method used in [52, §5] provides us the following results of Stokes multipliers when

the Stokes graph is given as in Figure 2.1:

At t = tc − iϵ :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

s−2 = iXA

s−1 = i(X−1
A −X−1

A X−1
B +X−1

B )

s0 = iXB

s1 = i(X−1
B −XAX

−1
B )

s2 = i(X−1
A −X−1

A XB),

(2.30)

At t = tc + iϵ :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

s−2 = i(XA −XAXB)

s−1 = i(X−1
B −X−1

A X−1
B )

s0 = iXB

s1 = i(XA −XAX
−1
B +X−1

B )

s2 = iX−1
A ,

(2.31)

where XA and XB are the exponential Voros periods of our non-perturbative wave function
(c.f., (2.22)):

XA = e2πiν/!, XB = e2πiρ/!. (2.32)

Excercise 9. Assuming Conjecture 2.4 is true, verify that the Stokes multipliers of (LI) are
described as above. Also, confirm that the following equation (2.33) holds true.
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Although the derivation is based on the conjectural arguments, the resulting Stokes mul-
tipliers satisfy the following two desired properties that strongly support the validity of our
method:

• The consistency condition

1 + sjsj−1 + isj+2 = 0 (j mod 5) (2.33)

which guarantees the single-valuedness of the solutions of (LI).

• The elliptic asymptotic formula of the solution of (PI):

q(t, ν, ρ, !) = ℘

(
5t

4! +
(ρ
! +

1

2

)
ωA +

(ν
! +

1

2

)
ωB

)
+ “O(!)”, (2.34)

where the expression can be obtained from an expression of non-perturbative partition
function via the ϑ-functions. Kitaev [70] obtain a formula which relates the phase-shift
in the elliptic asymptotics with the corresponding Stokes data. We can verify that the
Kitaev’s formula precisely agrees with our formula (2.30)–(2.31) (see [52, Remark 5.6]).

2.3.3 From isomonodromy to resurgent structure

Now, let us use the results of the previous subsection to derive a Stokes jump formula on
the perturbative/non-perturbative partition function. As is mentioned in §2.3.1, we are
interested in how the saddle connection on the B-cycle (or the expected Borel singularity∮
B ydx) contributes to the Stokes jump.
Our main claims obtained in [59] are the following:

Conjecture 2.5 ([59]). Let (ν±, ρ±) be two sets of parameters and T ±(t, ν±, ρ±, !) be
the analytic τ -function of (PI) defined on a domain that contains the point t = tc ± iϵ,
respectively. When t varies and cross the negative real axis, then these analytic τ -functions
satisfies the following (non-linear) connection formula:

T −(t, ν−, ρ−, !) = e
1

2πiLi2(e
2πiρ+/!)T +(t, ν+, ρ+, !) (2.35)

with

(ν+, ρ+) =

(
ν− − !

2πi
log(1− e2πiρ

−/!), ρ−
)
. (2.36)

Since t is the isomonodromic time, the Stokes multipliers corresponding to T ±(t, ν±, ρ±, !)
must be identical if they are related by the analytic continuation with respect to t. On the
other hand, the Stokes data (2.31) are obtained from (2.30) by the transformation

(XA, XB) )→ (XA(1−XB), XB). (2.37)

In fact, this is an example of the Delabaere–Dillinger–Pham formula (also known as cluster
transformation, or Kontsevich–Soibelman transformation) which we mentioned in §1.5. The
prefactor exp( 1

2πiLi2(e
2πiρ+/!)) on the right hand side of (2.35) is related to the generating

function of the monodromy symplectomorphism (2.37); see [12, 21] for similar results.
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We may simply write the formula by means of the Stokes automorphism as

Sτ(t, ν, ρ, !) = e
1

2πiLi2(e
2πiρ/!)τ

(
t, ν − !

2πi
log(1− e2πiρ/!), ρ, !

)
. (2.38)

Furthermore, recalling that the τ -function was obtained as the discrete Fourier transform
of the perturbative partition function, we can also derive the connection formula for the
perturbative partition function by looking at the 0-Fourier mode of the previous formula
(2.35)–(2.36). Thus we have

Conjecture 2.6 ([59]). The Stokes automorphism associated with the B-periods acts on the
perturbative partition function as follows:

SZ(t, ν, !) = exp

(
1

2πi
Li2(e

−!∂ν )− !∂ν
2πi

log(1− e−!∂ν )

)
Z(t, ν, !). (2.39)

The formula (2.39) describes all instanton corrections to the perturbative partition func-
tion explicitly in all order:

SZ(t, ν, !) =
∞∑

n=0

Z(n)(t, ν, !) (2.40)

with

Z(0)(t, ν, !) = Z(t, ν, !), Z(1)(t, ν, !) =
(
1 +

!
2πi

∂F

∂ν
(t, ν − !, !)

)
Z(t, ν − !, !), . . . .

(2.41)
Note also that the Seiberg–Witten relation ∂νF0 =

∮
B ydx makes (2.40) a well-defined trans-

series. We can verify that the result (2.39) precisely agree with the multi-instanton results
for the topological string obtained in [43, 42] (based on the non-perturbative analysis of
holomorphic anomaly equations initiated by [24, 25]), where the Stokes constant can be
identified with the BPS invarinat, as expected12. We may also observe that the first few
terms of the 1-instanton part (2.41) are consistent with a known connection formula for (PI)
(see [66] for example). These observations strongly support our heuristic derivation of (2.38).

In summary, the connection formulas (2.35)–(2.36) and (2.39) are a direct consequence
of the isomonodoromy property (i.e., integrability) of the Painlevé equation and the DDP
formula in exact WKB method.

2.4 Comments and other topics related to Part II

• In the latter half of Part II (§2.3), we made numerous considerations that have not been
mathematically rigorously proven. For example, proving the Borel summability of the
perturbative partition function, analyzing its Borel singularities, and the convergence
of the non-perturbative partition function (after taking the Borel), would constitute a
significant breakthrough. From a mathematical veiwpoint, in order to state formula
(2.39), it is also necessary to prove that the Borel singularity is mild enough to allow
the definition of the alien derivative in the first place. Providing a rigorous proof is a

12Since the BPS invariant for the B-cycle is equal to 1, it is invisible in the formula (2.39).
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challenging task, but the connection with the Painlevé equations might offer some clues
for the proof. (For example, methods such as the Riemann-Hilbert approach from [37]
might be applicable.)

• The similarity between the construction of τ -functions in Theorem 2.2 and Kyiv for-
mula ([40]) suggests a close relationship among the perturbative partition function of
topological recursion, the conformal blocks and the Nekrasov partition functions (c.f.,
[76, 5]). As an attempt toward these comparisons, there are [74, 9], but further math-
ematical research is still desirable. In this direction, recent progress has been made in
[14, 20, 15], such as the construction ofWhittaker vectors based on the Airy structure (an
algebraic formulation of topological recursion proposed by Kontsevich–Soibelman [73]).
Kyiv formula is also generalized partially to the q-difference Painlevé equations in [64],
so it would be interesting to establish an analogous formula by topological recursion.

Acknowledgement. The author would like to express gratitude to B. Eynard, E. Garcia-
Failde, A. Giacchetto, P. Gregori, D. Lewański, D. Mitsios and S. Oukassi who organize
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Equation, Ann. Henri Poincaré, 24, 1305–1353 (2023); arXiv:1805.10945.

[56] K. Iwaki, T. Koike and Y.-M. Takei, Voros Coefficients for the Hypergeometric Differen-
tial Equations and Eynard-Orantin’s Topological Recursion - Part II : For the Confluent
Family of Hypergeometric Equations, Journal of Integrable Systems, 4 (2019), xyz004;
arXiv:1810.02946 [math.CA].
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[84] P. Painlevé, Sur les équations différentiel les du second ordre et d’ordre supérieur dont
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