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Preliminary notes

These are preliminary notes for a Les Houches lecture series. Please send corrections or im-

provements to andrew.neitzke@yale.edu.

1. Lecture 1

These talks are about geometry associated to N = 2 supersymmetric field theory, mostly

related to the notion of BPS state.1

A rough plan of the talks:

(1) Coulomb branches ofN = 2 theories; BPS states; wall-crossing formula; the examples of

class S
(2) Interpretation of the wall-crossing formula in terms of algebras of line defects

(3) Line defect vevs as distinguished cluster-type coordinates; the TBA for line defect vevs;

consequences for hyperkahler metrics

(4) q-deformation (briefly)

(5) Conformal blocks

This first lecture concerns some old facts and almost-facts aboutN = 2 supersymmetric quan-

tum field theories (QFT) in four dimensions. I’ll give my understanding of the “standard” picture

of the physics on their Coulomb branch, as developed by very many authors beginning from [1,

2]. A useful general pedagogical reference is [3].

1.1. Data that define N = 2 field theories. A remark: Mostly we will be talking about some

concrete geometric structures, which are downstream from the QFT. So to get the main content

of the lectures it’s not strictly necessary to know what an N = 2 supersymmetric QFT in four

dimensions is. But at least you should know what kind of data determines one. The idea is that,

starting from any of these data, we will get all the geometric structures we are going to discuss.

Example 1.1 (Pure nonabelian gauge theory). Fix a compact simple groupG, sayG = SU(N),

and a parameterΛ ∈ C×
with dimensions ofmass. These data determine anN = 2 supersymmet-

ric theory, in a conventional way (write down a space of fields and a Lagrangian, then “quantize.”)

The space of fields includes aG-connection on the 4-dimensional spacetime as in Nekrasov’s lec-

tures, plus new ingredients found only in the supersymmetric theory: a gC-valued scalar field Φ,

and fermion fields which I won’t write.

The example of pure nonabelian gauge theory with G = SU(2) will be a running example

throughout these notes.

Example 1.2 (Pure abelian gauge theory). Fix a compact abelian group T = U(1)r, and a

coupling matrix (τIJ)
r
I,J=1, symmetric, with Im τ positive definite. These data also determine an

1
“BPS” stands for Bogomolny-Prasad-Sommerfield.
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N = 2 supersymmetric theory, similar to the above. (The coupling matrix enters the action as

S =
τIJ
4π

∫
F I+ ∧ F J+ + · · ·

where F I
means the curvature of the I-th U(1) gauge field, and + means the self-dual part.)

You should have the idea that the abelian theory is much simpler than the nonabelian one.

Not every N = 2 theory is determined by a Lagrangian. Here are a few other kinds of data

which are supposed to determine N = 2 theories.

Example 1.3 (Class S theory). Fix a nonsingular Riemann surface C , and a Lie algebra g of

ADE type. (Also fix a Lagrangian subgroup of H1(C,Z(G)) where G is the simply connected

form of g, but this is a detail better ignored most of the time.) These data determine an N = 2

supersymmetric theory, called a “theory of class S .”

The class S theories with g = A1 will supply another of our main running examples.

Example 1.4 (Calabi-Yau compactification). Fix a complete non-compact Calabi-Yau 3-fold

X . (And perhaps some additional discrete data.) This also determines anN = 2 supersymmetric

theory, in two different ways, by “geometric engineering.”

The various classes overlap quite a bit; when they do, sometimes the different constructions

lead to different insights into the theory.

1.2. Outputs: executive summary. In the rest of this lecture + beginning of the following one,

I am going to describe the following outputs of an N = 2 supersymmetric QFT:

• Coulomb branch: a complex manifold B, with an open dense subset Breg.

• Charge lattice: a local system Γ → Breg of lattices, with a skew pairing ⟨·, ·⟩.
• Central charge functions: homomorphisms Z : Γu → C, varying holomorphically with

u ∈ Breg.

• BPS indices: functions Ω : Γ → Z, obeying the wall-crossing formula.

1.3. Coulomb branch. The physics of a QFT in R4
(e.g. correlation functions, Hilbert space)

depends on an additional choice: a point u of the moduli space of vacua. In the case of N = 2

theories, this moduli space can be described rather concretely. We will focus on a subspace called

the Coulomb branch B,2 and on an open dense subset Breg ⊂ B where the physics is simplest. Breg

is a complex manifold. Let r = dimBreg.

Example 1.5. In the pure SU(2) theory, the Coulomb branch is B ≃ C (so r = 1). (Explicitly

it is parameterized by the expectation value u = ⟨TrΦ2⟩, where Φ is the su(2)-valued complex

scalar field in the theory.) The regular locus is Breg = B \ {±2Λ2}.

2
We could define it as the subspace of the full moduli space which is fixed by the R-symmetry SU(2)R.

2



BPS geometry

u

−2Λ2 2Λ2

For a generic u ∈ B, the long-distance (sometimes also called “IR” or “low-energy”) physics in

vacuum u is given by pure abelian gauge theory, where T = U(1)r, with a symmetric coupling

matrix τIJ(u) depending holomorphically on u, with Im τ positive definite.3 Practically speaking,

this is a big win: the original theory may be very complicated, but its long-distance physics is

simple.
4

There is one more important point. τIJ(u) is allowed to bemultivalued as a function of u, with

monodromies

τ → τ ′ = (Aτ +B)(Cτ +D)−1

where

(
A B

C D

)
∈ Sp(2r,Z). The reason this is consistent is that the pure abelian gauge theories

with coupling τ ′ and τ are actually equivalent (electric-magnetic duality). Said otherwise τ is not

canonically defined, only defined after we make an extra choice.

Example 1.6. A local model, in r = 1 case: τ(u) = τ0 +
1
2πi

log u, multivalued with τ ′ = τ + 1,

corresponding to the matrix

(
1 1

0 1

)
. If Im τ0 > 0, then this model has Im τ > 0 for |u| small

enough. But it cannot extend to the whole complex plane.

Example 1.7. How could we get a τ(u) which does the job in the pure SU(2) theory? Seiberg-

Witten proposed (by educated guesswork) the picture we drew above, and figured out what the

monodromies would have to be: around each of u = ±2Λ2
it has to look like the local model

above. Then they pointed out that if we have a family of elliptic curves Σu over B, which are

smooth for u ∈ Breg and nodal for u = ±2Λ2
, the modulus τ(u) will have all the requisite

properties.

So: let

Σu = {(y, z) ∈ C2 | y2 = Λ2z−1 + u+ Λ2z} .

Then for u ∈ Breg, Σu is a twice-punctured smooth torus. Its closure Σu = C/[Z ⊕ τ(u)Z]; that
determines τ(u). For u = ±2Λ2

, Σu is a twice-punctured nodal torus. (Exercise: check this!)

So the IR physics here is determined by some algebraic geometry, which at first looks com-

pletely alien to the QFT we started with. We’ll discuss interpretations of it later.

3
The long-distance theory may also have flavor symmetries.

4
Loosely we could say the exact physics in vacuum u is given by pure abelian gauge theory with a coupling matrix

τIJ(u), deformed by irrelevant operators. To all orders in an expansion in distances, these irrelevant operators are

determined by the Taylor expansion of τIJ around u.
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1.4. Charge lattices. For u ∈ Breg, there is a lattice ΓEM
u of electromagnetic charges. It has a

skew pairing (“DSZ”)

⟨·, ·⟩ : ΓEM
u × ΓEM

u → Z
determined by the Poynting vector, or more concretely ⟨γe, γm⟩ = 1. The lattices ΓEM

u form a local

system over Breg, with monodromies valued in Sp(2r,Z) — the same ones we discussed above.

In general there may also be flavor symmetries which give rise to a finer notion of charge. We

need to pay particular attention to the abelian ones; these give an extension of the charge lattice,

0 → Γflavor → Γu → ΓEM
u → 0 .

The full monodromy of Γ is valued in Sp(2r,Z)⋊ (Γflavor)2r. (The extra monodromies reflect the

possibility of shifting the flavor charge by a multiple of the electromagnetic charge.)

Example 1.8. In the pure SU(2) theory, Γflavor = 0, and Γu = ΓEM
u = H1(Σu,Z). The pairing

⟨·, ·⟩ is the intersection pairing.

The Hilbert space of the theory on R4
is decomposed as

Hu =
⊕
γ∈Γu

Hγ,u .

1.5. Central charges. Inside the N = 2 supersymmetry algebra S there is a central generator

Z , which acts as a constant in each charge sector, and is additive in the charges: thus there is a

homomorphism

Z : Γu → C
the central charge. Thus we have a global function Z : Γ → C. Z is holomorphic. It is critically

important for the rest of the story.

Example 1.9. In the pure SU(2) theory, we have a holomorphic 1-form λ = y/z dz on Σu, and

Z : Γu → C is

Z(γ) =

∮
γ

λ =

∮
γ

√
Λ2z−1 + u+ Λ2z

dz

z
.

(It’s well defined even though λ has poles at the punctures of Σu; that’s because those poles have

zero residue.) Concretely, the Z(γ) are given by hypergeometric functions of u, with branching

around the points u = ±2Λ2
.

1.6. The class S examples.

Example 1.10. In a class S theory with g = sl2, taking C to be a surface of genus gC , the

Coulomb branch is the space of holomorphic quadratic differentials, B = H0(C,K2
C). (Recall

that a holomorphic quadratic differential is an object written locally as ϕ2(z) = f(z) dz2, with

f(z) holomorphic.) For each u = ϕ2 ∈ B there is a corresponding spectral curve

Σu = {(z ∈ C, y ∈ T ∗
zC) | y2 + ϕ2(z) = 0} ⊂ T ∗C .

The projection map π : Σu → C is a branched double cover, branched at the zeroes of ϕ2. The

curve Σu is smooth and reduced just if all zeroes of ϕ2 are simple.

4
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C

Σu

The regular locus is

Breg = {ϕ2 ∈ H0(C,K2
C) | Σu is smooth} .

It has dimension r = 3gC − 3.

Σu has an action of Z2 given by σ(z, y) = (z,−y). Then σ also acts on H1(Σu,Z). Let

H1(Σu,Z)− be the σ-odd part. The charge lattice Γu is an extension ofH1(Σu,Z)− by (Z/2Z)gC .
(We won’t have to worry much about this finite extension; almost everything we do will just use

classes which are in H1(Σu,Z)−.)

2. Lecture 2

[first, quick review of the previous lecture]

2.1. BPS states in a baby example. I’ll start with a baby example, to get oriented.

Fix a Riemannian manifoldM . Then consider

H = Ω∗
L2(M) .

It is acted on by the Hermitian operator

H =
1

2
∆ .

But there are more operators around than just H : H is a unitary Z/2Z-graded representation of

a Lie superalgebra S , defined as follows.

S = S0 ⊕ S1, S0 = C ·H, S1 = C ·Q⊕ C ·Q,

i.e. S has 2 odd generators Q,Q and one even generator H , with the brackets
5

[Q,Q] = 2H, [Q,Q] = 0, [Q,Q] = 0, [Q,H] = 0, [Q,H] = 0.

A Z/2Z-graded representation of S is a representation of S on a Z/2Z-graded vector spaceH =

H0⊕H1
, where S i

mapsHj → Hj+i
. A unitary representation of S is a representation in which

H is a Hilbert space,H acts by a formally self-adjoint operator, and Q,Q act by operators which

are formally adjoint to one another.

5
Our convention is that [, ] means the graded bracket, i.e. for objects x, y which are in grade nx, ny respectively,

[x, y] = xy − (−1)nxnyyx. So this bracket is a commutator unless both x and y are odd, in which case it is an

anticommutator.
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To realizeH as a representation of S we just take

Q = d, Q = d∗, H =
1

2
∆.

ThenH is a unitary representation of S . It is also Z/2Z-graded:

H = H0 ⊕H1, H0 =
⊕
k

Ω2k
L2(M), H1 =

⊕
k

Ω2k+1
L2 (M).

Now let us explore a bit of the unitary representation theory of S , following [4]. The unitarity

implies that all eigenvalues of H are nonnegative, because

2⟨ψ,Hψ⟩ = ⟨ψ,QQψ⟩+ ⟨ψ,QQψ⟩ = ∥Qψ∥2 + ∥Qψ∥2 ≥ 0.

Moreover the norm ∥·∥ is nondegenerate, so we conclude that

Hψ = 0 ⇔ Qψ = 0, Qψ = 0.

In particular, each state withHψ = 0 generates a 1-dimensional (trivial) representation of S . We

call this representation V 0
0 or V 1

0 depending whether the single state is in H0
or H1

. These rep-

resentations are called “short.” The only other possibility for a unitary irreducible Z/2Z-graded
representation is a 2-dimensional representation, with one state in H0

and one in H1
, both with

Hψ = Eψ for some E > 0; these representations are called “long.”

IfM is compact, thenH is a countable orthogonal direct sum of unitary irreducible represen-

tations ofA. (We sayH “contains only discrete spectrum.”) See the figure below, where each dot

represents one state; note that the states with E > 0 come paired up into long representations,

while those with E = 0 are in short representations by themselves.

[fig]

The short and long representations have very different character, which we see clearly if we

consider deformations of the representation H, e.g. by varying the Riemannian metric on M .

As we deform H, the nonzero eigenvalues E > 0 of H can change continuously: the long rep-

resentations are not rigid. The eigenvalues E = 0 have a harder time changing, because the

representations V i
0 are rigid. This fact helps to “protect” the ground states. However, it doesn’t

protect them absolutely: the reducible representation V 0
0 ⊕V 1

0 is not rigid, since it can deform to

a long representation with E = ϵ > 0. See the figure below.

With this deformation process in mind we consider the following quantity.

χ(H) = TrH(−1)F = (# copies of V 0
0 inH)− (# copies of V 1

0 in H).

The key property of the index is that it is invariant under deformations of H, as long as H
contains only discrete spectrum: if insideH a copy of V 0

0 ⊕V 1
0 deforms into a long representation,

then χ changes by 1− 1 = 0.

The main lesson here is: while the full Hilbert space H depends strongly on every little detail

of the system, by using a little bit of the representation theory of the supersymmetry algebra A
— looking at representations which are particularly rigid — we are able to extract a more robust

and invariant quantity. A second lesson is that the rigid representations are the ones which are

smaller than usual, by virtue of being annihilated by part of A (in this case actually all of A).

6
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2.2. BPS states in N = 2 theories. Now let’s return to our context of N = 2 theories.

Inside the Hilbert spaceHu,γ there is the subspaceH1
u,γ of 1-particle states.

6

Like the full Hilbert space, it is a unitary representation of theN = 2 supersymmetry algebra

S . So we want to discuss the representations of this algebra.

S is a super Lie algebra extending iso(3, 1). It has 8 odd generators, described as follows.

Spin(3, 1) has 2 inequivalent spin representations S±
, both complex and 2-dimensional. Each

of S±
is equipped with an invariant antisymmetric pairing ·, and there is an intertwiner Γ :

S+ ⊗ S− → V , with V = R3,1
the vector representation. The odd generators of A are Q1

, Q2

valued in S+
and Q

1
, Q

2
valued in S−

.
7
The odd bracket relations are

[QI(s), QJ(s′)] = (s · s′)ϵIJZ , [Q
I
(s), Q

J
(s′)] = (s · s′)ϵIJZ ,

[QI(s), Q
J
(s′)] = δIJΓ(s, s′)P .

Suppressing the spinor and vector indices, we write these more schematically as

[QI , QJ ] = ϵIJZ , [Q
I
, Q

J
] = ϵIJZ , [QI , Q

J
] = δIJP .

Now we can describe the 1-particle representations. In fact, it’s sufficient to consider the sub-

spaceH1,rest
M where the translation generator P acts by the character (M, 0, 0, 0) for someM > 0

(we only want massive particles, and no tachyons, so don’t allow M ≤ 0). This subspace is a

unitary representation of the “little algebra” Srest
generated by QI

, Q
I
, Z , P and generators of

Spin(3) ⊂ Spin(3, 1). Now we want to classify these.

Spin(3) ≃ SU(2) has only one spin representation S, which is complex and 2-dimensional,

with an invariant antisymmetric pairing. So S+ ≃ S− ≃ S when considered as representations

of Spin(3). After fixing an isomorphism, we can write the odd brackets in Srest
acting on H1,rest

M

as

[QI , QJ ] = ϵIJZ, [Q
I
, Q

J
] = ϵIJZ, [QI , Q

J
] = δIJM.

Now, we consider the generators

Qϑ =
1√
2
(eiϑ/2Q1 + e−iϑ/2Q

2
).

Now for any Ψ ∈ H1,rest
M we must have

⟨Ψ, [Qϑ, Qϑ]Ψ⟩ = ∥QϑΨ∥2 + ∥QϑΨ∥2 ≥ 0

6
Warning: this definition is not as transparent as it might sound. To defineH1

u,γ we need to be able to separate the

1-particle states from the continuum of multiparticle states. Even for generic u, there are at least two sources of such

continua: massless photons, which are always present, and also possible decays if γ is not primitive (if γ = kµ and

k1+k2 = k then 2-particle states of charges k1µ and k2µ could mix with 1-particle states of charge γ.) Nevertheless

it seems that this does not cause a problem in practice. From now on I’ll assume that H1
u,γ is indeed a well defined

representation of the supersymmetry algebra.

7
What we mean by “Q is valued in S+

” is that for any s ∈ S+
, there is a corresponding operatorQ(s), depending

linearly on s. S+ ⊕ S−
admits a conjugate-linear involution exchanging the factors, so given s ∈ S±

we can

write s ∈ S∓
; then the adjointness condition means that in unitary representations QI(s) is adjoint to Q

I
(s̄), i.e.

Q(s) = Q(s).

7
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and on the other hand

[Qϑ, Qϑ] = eiϑZ + e−iϑZ + 2M

so we conclude that

M ≥ Re(eiϑ)Z .

Since this holds for every ϑ it follows that

M ≥ |Z| .

Moreover, if we have equalityM = |Z|, thenQϑ andQϑ both annihilate the whole representation

H1,rest
M . The representations withM = |Z| are called short or BPS while those withM > |Z| are

called long or non-BPS.

Classification of short representations of Srest
:

Vn = (1⊕ 1⊕ 2)⊗ n

for each n = 1, 2, 3, · · · There are also long representations:

Wn = (5 · 1⊕ 4 · 2⊕ 3)⊗ n

This also gives a classification of the representations of S containing the massive 1-particle states.

2.3. The BPS index. We count how many short representations occur, by a BPS index (second

helicity supertrace)

Ω(γ;u) = −1

2
TrH1,BPS,rest

u,γ
(−1)2J3(2J3)

2

This index has the virtue that it vanishes in all long representations (exercise!) Thus it is invariant

under processes where the representation H1,BPS,rest
u,γ varies continuously (including processes

where short representations pair up into long representations.) Moreover we compute directly

that each copy of Vn in H1,BPS,rest
contributes (−1)n+1n to Ω(γ;u) (exercise!)

What are these indices in practice?

Example 2.1. In the pure SU(2) theory, for sufficiently large |u|, one finds by studying the clas-

sical theory

Ω(±γm + 2nγe;u) = +1 for all n ∈ Z (massive hypermultiplets, V1) ,

Ω(±2γe;u) = −2 (massive vectormultiplets, V2) .

Example 2.2. In a theory of class S of type A1, for any u = ϕ2 ∈ B = H0(C,K2
C), and any

phase ϑ, we consider ϑ-trajectories: this means paths on C where the 1-form e−iϑ
√
−ϕ2 is real.

The ϑ-trajectories form a singular foliation of C . We are interested in finite ϑ-trajectories, of two

types: saddle connections, which are isolated, and closed loops, which occur in ring domains.

[insert a figure here]

Each finite ϑ-trajectory has an associated charge γ, as indicated in the figure, and one has

ϑ = argZγ (exercise: prove it!) Then, according to [5, 6], the BPS index Ω(γ;u) is a weighted

count of finite-length geodesics of phase ϑ = argZγ :

Ω(γ;u) = (# saddle connections of charge γ)− 2(# ring domains of charge γ).

8
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One way to explore the BPS indices in a class S theory: fix ϑ and draw the ϑ-trajectories

emanating from the branch points. As we vary ϑ, the picture exhibits discontinuous jumps when

we cross the phase of a BPS particle.

[show animations at this point]

3. Lecture 3

[short review of previous lectures]

3.1. Remarks and connections. To connect with Nekrasov’s lectures: sometimes it is con-

venient to choose a basis (γIe , γm,I , γ
A
f ) of Γu, where γ

A
f ∈ Γflavor

and ⟨γJe , γm,I⟩ = δJI . Then

the functions aI = Z(γIe ) give local coordinates on a neighborhood of u in Breg. Also define

aD,I = Z(γm,I). These aren’t independent: they can be expressed as functions of the aI . Then

the couplings τIJ(u) are determined by

τIJ =
∂aD,J

∂aI
,

and locally we can write τIJ = ∂aI∂aJF(a).

To connect with Gukov’s lectures: Gukov discussed a BPS index which is (roughly) counting
BPS (ground) states of a 2-d system in finite volume (space = S1

). In our story we are discussing a

system in infinite volume (space = R3
), and studying 1-particle states rather than ground states.

3.2. Wall crossing. The arguments I gave so far suggest that Ω(γ;u) would be locally indepen-

dent of u — we have a family of Hilbert spaces H1,BPS
u,γ , all representations of S , and the index is

supposed to be invariant under deformations of representations.

But this would lead to a contradiction: we saw in the examples I showed that theΩ(γ;u) in fact

do depend on u. Moreover, the Ω(γ;u) we described in the pure SU(2) theory are not invariant

under monodromy in the full u-plane.

The correct statement is that the Ω(γ;u) depend on u in a piecewise constant way. The tech-

nical problem is that the continuum of multiparticle states interacts with the 1-particle states,

so that at some values of u the space H1,BPS
u,γ is actually ill defined: this violates our argument

for deformation invariance. (The analogue in our baby example of the Witten index would be to

study a “family” of compact Riemannian manifolds which at some moment loses compactness:

then the index can jump.)

Imagine watching a BPS particle of charge γ as we vary u. We are worried that maybe this

particle can decay into particles of charges µ1, µ2 with µ1 + µ2 = γ, but µ1, µ2 not multiples of

γ. Can it happen? Conservation of energy would require that the rest masses obey

M1 +M2 ≤M .

ButM = |Z(γ)| since the particle is BPS, while the decay constituents must at least haveMi ≥
|Z(µi)|, and thus we can extend the above to

|Z(µ1)|+ |Z(µ2)| ≤M1 +M2 ≤M = |Z(γ)|
9
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On the other hand µ1 + µ2 = γ, which means that

Z(µ1) + Z(µ2) = Z(γ) ,

so the triangle inequality gives

|Z(µ1)|+ |Z(µ2)| ≥ |Z(γ)| .

The only way to make these relations consistent is to have

Z(µ1) ∥ Z(µ2)

i.e. these two complex numbers have the same phase.

The upshot is that this decay can occur only when there exist BPS particles with charges µ1, µ2

and Z(µ1) ∥ Z(µ2). For a generic u, the condition Z(µ1) ∥ Z(µ2) will not be satisfied; rather, it

will be satisfied for u on some codimension-1 wall in Breg. The loci where this happens are called

potential walls of marginal stability.
So, we expect that Ω(γ;u) ∈ Z is piecewise constant, with jumps only at potential walls of

marginal stability. The places where a jump actually occurs are called walls of marginal stability.

Example 3.1. In the pure SU(2) theory, there is a single potential wall of marginal stability.

u

−2Λ2 2Λ2

(Exercise: using our description of Z , explain why this is the right picture.)

It turns out this is an actual wall of marginal stability, not only a potential one. We have already

discussed the spectrum outside the wall: there are infinitely many BPS particles. Inside the wall,

there are BPS particles with charges {±γm,±(2γe − γm)}, each with Ω = 1 (hypermultiplet). So

when we cross the wall from outside to inside, almost all of these infinitely many particles decay,

leaving just four.

3.3. Wall-crossing formula. If we know the spectrum of BPS particles on one side of a wall

of marginal stability, how do we determine what it will be on the other side? It turns out that

this doesn’t depend on any UV details of the theory: it involves the long-range forces holding

together very weakly bound states, i.e. it is a completely IR phenomenon.

We draw a diagram in B × S1
: a point (u, ϑ) is marked on the diagram if the theory at u ∈ B

has a BPS particle with argZ = ϑ. This gives a collection of codimension-1 walls, one for each

BPS particle. Call it the BPS scattering diagram for this theory. I emphasize that the walls in this

diagram are not the walls of marginal stability for bulk BPS particles which we discussed before.

Rather each wall represents a bulk BPS particle.
8

8
I use the word “bulk” to emphasize that these are particles which propagate freely in the bulk spacetime R4

, and

to distinguish from some other kind of BPS states which will show up momentarily.
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u

ϑ

γ1

γ1γ2

γ2

γ1 + γ2

u

ϑ

γ1

γ1γ2

γ2
γ1 + 2γ2
2γ1 + 3γ2

γ1 + γ2

Now I can explain the Kontsevich-Soibelman wall-crossing formula of [7]. It was originally

written down in the context of algebraic geometry (generalized Donaldson-Thomas invariants)

but Denef-Moore soon realized it should apply also to BPS particles in N = 2 theories. It was

the endpoint of a long sequence of works which addressed many special cases.

To write down the wall-crossing formula, we first consider a field Au generated by formal

variables Xγ , γ ∈ Γu, with the product law

XγXµ = (−1)⟨γ,µ⟩Xγ+µ .

Define an automorphism of Au by

Kγ(Xµ) = (1−Xγ)
⟨γ,µ⟩Xµ . (3.1)

Now, consider a contractible oriented loop ℓ in B × S1
. Every time we cross a wall in the BPS

scattering diagram, we include a factor K±Ω(γ)
γ ; the ± keeps track of whether we cross in the

direction of increasing or decreasing ϑ. The wall-crossing formula says that∏
K±Ω(γ)

γ = 1 . (3.2)

Example 3.2. Suppose we have two BPS particles with charges γ1 and γ2 with inner product

⟨γ1, γ2⟩ = 1, and argZ(γ2;u) > argZ(γ1;u).

u

ϑ

γ1

γ1γ2

γ2

γ1 + γ2

ℓ

Now what happens if we vary u to a region where argZ(γ2;u) < argZ(γ1;u)? Then we are

crossing a potential wall of marginal stability. To see what happens on the other side we use the

algebraic identity

Kγ2Kγ1 = Kγ1Kγ1+γ2Kγ2 .

(Exercise: prove this identity!) The right side is the unique product of the formKγ1 · · · Kγ2 which

equals the left side, where the · · · consists of charges of the formmγ1 + nγ2,m,n > 0.

11
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Thus, applying (3.2) to the loop shown in the BPS scattering diagram above, we conclude that

(as shown in the diagram) on the other side of the wall there is an additional particle with charge

γ1 + γ2, and no other particles with chargesmγ1 + nγ2,m,n > 0.

Example 3.3. Now suppose everything is as before except that ⟨γ1, γ2⟩ = 2 instead of 1.

u

ϑ

γ1

γ1γ2

γ2
γ1 + 2γ2
2γ1 + 3γ2

γ1 + γ2

ℓ

In this case we have a different identity:

Kγ2Kγ1 = (Kγ1K2γ1+γ2K3γ1+2γ2 · · · )K−2
γ1+γ2

(· · · K2γ1+3γ2Kγ1+2γ2Kγ2) .

This identity is harder to formulate than the previous one, since it involves an infinite product.

Still, one can introduce a suitable topology in which the product converges, and then the identity

is indeed true. One useful way to think of it is as follows. We study Au through its spectrum:

a point of SpecAu is given by actual numbers xγ ∈ C×
obeying (3.1). The operators Kγ have

an induced action on SpecAu. Then acting on a point with |xγ1+γ2| < 1, both sides make sense

and are equal. (Warning: the order of composition is reversed when we consider the action on

SpecAu, so to check the identity this way, you act first with the leftmost operator rather than

the rightmost.) A proof is in [8].

The conclusion is that on the other side of the wall we have infinitelymany charges withΩ = 1,

and a single charge with Ω = −2.

Note that this second example “explains” the wall-crossing behavior we described in the pure

SU(2) theory. At least, it would explain it, if we knew why the wall-crossing formula is true!

So: why is the wall-crossing formula true? By now there are various arguments. I’ll describe

a physical argument which appeared in [9], with the advantage that it makes clear where the

algebra Au comes from. (See [10] for another physical argument, in some ways more direct, just

using the form of the long-distance interaction between BPS particles.)

4. Lecture 4

[review]

4.1. Interpretations. BPS particles in 4d N = 2 theories have many different interpretations.

To be concrete, for the BPS particles in the pure SU(2) theory which we discussed, we have at

least six interpretations. I mention them here, just in case one of them reminds you of something!

• ‘t Hooft-Polyakov solutions of Bogomolny equations in R3
. (SU(2) gauge theory).

• Saddle connections and closed loops. (strings of 5d Yang-Mills) [fig]

12
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• Special Lagrangian surfaces in T ∗C ending onΣu = {y2+ϕ2(z) = 0}. (M2-branes ending

on M5-brane in M theory) [fig]

• Special Lagrangian 3-spheres in a Calabi-Yau manifold X = {x2 + y2 + w2 + ϕ2(z) = 0}
(terms and conditions apply: more precise statement would be “stable objects in Fukaya

category of a symplectic manifold with appropriate Bridgeland stability condition”) (D3-

branes of Type IIB string theory on X) [fig]

• Cohomology of moduli spaces of stable representations of the 2-Kronecker quiver. (quiver

quantum mechanics) [fig]

• Split attractor flows: certain networks drawn on B. (effective dynamics on Coulomb

branch) [fig]

4.2. The algebra. We consider supersymmetric line defects in ourN = 2 field theory. Fix coordi-

nates in R4
. We’ll consider line defects which are extended in the x3 direction. For each ζ ∈ C×

with |ζ| = 1 there is a 1
2
-BPS subalgebra

9

Sζ ⊂ S

which contains the translations in the x3 direction, thus is a candidate to be preserved by a line

defect. Sζ is generated by the operators Qϑ, Qϑ from the previous lecture, where ζ = eiϑ.

After continuation to Minkowski signature, it is sometimes useful to think of an Sζ-invariant

line defect as representing the world-line of a very heavy particle with argZ = ϑ.

Example 4.1. In the pureU(1) theory, letΦ denote the complex scalar field andA the connection

1-form. Then there is a supersymmetric Wilson line operator defined by

L = exp

∫
ζ−1Φ + iA+ ζΦ .

Similarly one can define supersymmetric Wilson lines in pure nonabelian gauge theory.

For each fixed ζ , the supersymmetric line defects form some kind of tensor category, not yet

fully understood. We will work with a certain reduction of this category. First, we pass to some

kind ofK-theory of the category — considering line defects up to deformation equivalence. This

gives an algebra. Then we further simplify this algebra by taking coinvariants for the SO(3)

action by rotations.

Applying this procedure to the original (UV) N = 2 theory, we get a single algebra Aζ of line

defects. We can also apply it to low energy (IR) theories on the Coulomb branch, and get a family

of algebras AIR
u,ζ . The UV algebra can be complicated, but the IR algebras are relatively simple.

We have one defect LIR
γ for each γ ∈ Γu. They have an OPE given by

LIR
γ L

IR
µ = (−1)⟨γ,µ⟩LIR

γ+µ

(Up to the tricky sign, this expresses the linearity of the theory: two charged particles behave

like one particle with the combined charge. The sign has to do with the shift in fermion number

9
By

1
2 -BPS we mean it contains half of the odd generators in S .

13
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associated to the angular momentum.) So this is the physical realization of theAu that appeared

in the wall-crossing formula.

Example 4.2. In a class S theory of type A1,Aζ is an algebra generated by simple closed curves

on C (commutative skein algebra, slightly interesting product law), Au,ζ is an algebra generated

by simple closed curves on Σu (torus algebra, dead simple product law).

4.3. UV-IR map for line defects. For a generic (u, ζ), there is a “UV-IR map”

RGu,ζ : Aζ → AIR
u,ζ .

It maps a UV line defect L to a linear combination of IR line defects:

RGu,ζ(L) =
∑
γ∈Γu

Ω(L, γ;u, ζ)LIR
γ

where the coefficients Ω(L, γ;u, ζ) ∈ Z.
The coefficients in the UV-IR map also have a “BPS” interpretation, as framed BPS state counts.

Indeed, the system including the line defect has a Hilbert spaceHL, still infinite-dimensional, but

now not a representation of S anymore: rather it is only a representation of the subalgebra Sζ

preserved by the line defect. By a framed BPS state of charge γ we mean a state of the system

including the line defect, which saturates the inequality E ≥ −Re (Zγ/ζ); such states are also

annihilated by all of the odd generators of Sζ . We emphasize that unlike the BPS states we orig-

inally studied, which describe particles that are free to move in the bulk, a framed BPS state of a

line defect L is really to be thought of as a ground state of this fixed object.

Now letHBPS
L,γ,u denote the space of framed BPS states with the line defect L inserted. Then the

framed BPS index is

Ω(L, γ;u) = TrHBPS
L,γ,u

(−1)2I3

where I3 denotes a generator of the SU(2)R symmetry of the N = 2 theory (this symmetry is

always preserved by the line defects we consider.)

When (u, ϑ = arg ζ) crosses a wall of the BPS scattering diagram, the UV-IR map jumps.

Namely, suppose the wall corresponds to charge γ and BPS index Ω(γ). Then the jump ofRGu,ζ

is by postcomposition with the automorphism KΩ(γ)
γ , i.e.

RGu+,ζ+ = KΩ(γ)
γ ◦RGu−,ζ− .

Example 4.3. In the pure SU(2) theory, take L to be the
1
2
-BPS Wilson line operator in the

fundamental representation. Then for any generic (u, ζ), RGu,ζ(L) turns out to be a sum of

three IR line defects. At large |u| we can describe them: two Wilson lines (electric) and one

Wilson-’t Hooft line (dyon). (The dyon is the surprising part: classically we would just expect the

two electric states.)

Example 4.4. In class S theories,RGu,ζ is path lifting…

14
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Here is the physical picture, described in [9]. When (u, ζ) is near the wall, there can exist

framed BPS states which are very weakly bound: they are described by a “core” which is a framed

BPS state of charge µ, and a “halo” made of ordinary BPS particles, of charge γ. Each such particle

turns out to haveΩ(γ)⟨γ, µ⟩ possible quantum states, each of which can be occupied or not. These

framed BPS states exist on one side of the wall and not on the other.

Thus a UV line defect L which has RG(L) = LIR
µ on one side of the wall will be “dressed” by

bulk BPS particles and map to RG(L) = LIR
µ (1 − LIR

γ )⟨γ,µ⟩Ω(γ)
on the other side. This accounts

for the transformation KΩ(γ)
γ of the mapRG at the wall.

4.4. Return to thewall-crossing formula. Nowhowdoes this relate to the Kontsevich-Soibelman

wall-crossing formula? The point is that the RG map is canonically defined, not subject to any

monodromy; it has jumps at the BPS scattering diagram, but it is a perfectly single-valued object.

If we travel around a loop ℓ in B × S1
, beginning and ending at (u, ζ), then we find

RGu,ζ =

(∏
γ

KΩ(γ)
γ

)
◦RGu,ζ .

The image ofRGu,ζ inAu,ζ is big enough (at least in many examples, and hopefully always) that

this implies ∏
γ

KΩ(γ)
γ = 1

as desired.

4.5. Reduction to three dimensions. These algebras might sound a little abstract, so let’s try

to make them more concrete. We consider the compactification of our 4d N = 2 theory to three

dimensions on a circle, of length R. What do we get?

To describe the IR physics, one idea would be to start with the IR description of the 4d theory

over Breg and compactify that. Doing this in the most naive possible way, we obtain a supersym-

metric sigma-model: that’s a theory whose bosonic part is a theory of maps from 3d spacetime

to a Riemannian manifold Mreg. Mreg is a bundle over the base Breg, with fiber a compact torus

Tu ≃ (S1)2r, a torsor over Hom(ΓEM
u ,U(1)). The fiber coordinates of Mreg are holonomies of

the U(1)r gauge fields θIe and their magnetic duals θm,I . The metric gsf is given by an explicit

formula:

gsf = R(Im τ)|da|2 +R−1(Im τ)−1|dz|2 ,

where we introduced

dzI = dθm,I − τIJdθ
J
e .

In fact, gsf is not only Riemannian, its metric is hyperkähler. That is required by the amount of

supersymmetry we have here (N = 4 in three dimensions).

Does the naive dimensional reduction tell the full story? Optimistic view in highly super-

symmetric theories: things will be exact unless there is a reason not to be. There is one natural

candidate source of quantum correction: 3d “instanton” effects associated to BPS particles going
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around the circle. We can consider a baby example: U(1) theory coupled to 1 charged hypermul-

tiplet. In this theory we have a single BPS particle. Then we can compute directly: the exact IR

theory is still a supersymmetric sigma-model [11, 12], but with a corrected metric g, obeying

g − gsf = O(e−RM)

whereM = |Z| is the mass of the BPS particle.

In all but themost trivial examples, though, we have both electrically andmagnetically charged

particles. Thenwe can’t calculate the corrected metric directly: we need a more powerful method.

4.6. Twistor space. Our problem is to describe the low-energy physics of our reduced theory.

We expect the answer will be governed by a hyperkähler metric g on the target space M. To

explain how we compute g, first we should recall what “hyperkähler” actually means. The usual

definition is:

• M is hypercomplex, i.e. it admits three complex structures I1, I2, I3 obeying I1I2 = I3,

I2I1 = −I3 and cyclic permutations.

• g is Kähler with respect to each of these complex structures. (Thus it admits three sym-

plectic forms ω1, ω2, ω3.)

Once we have this structure, we get various things for free:

• Even though the definition only involves three Kähler structures (Ii, ωi), these generate

a whole S2
worth of Kähler structures: any s⃗ ∈ S2 ⊂ R3

gives Is⃗ =
∑3

i=1 siIi and

ωs⃗ =
∑3

i=1 siωi. In fact, it’s a good idea to view this S2
as complex itself, i.e. identify

it as CP1
, with the usual inhomogeneous coordinate ζ . Then one can assemble all of the

complex structures into a single complex manifold Z(M), the twistor space ofM. Z(M)

is fibered over CP1
, with the fiber over ζ isomorphic to (M, Iζ).

• For each complex structure Iζ we have a holomorphic symplectic form Ωζ , given by the

formula

Ωζ = ζ−1ω2 + iω3

2
− iω1 + ζ

ω2 − iω3

2
for ζ ∈ C×

, and Ωζ=0 = ω2 + iω3, Ωζ=∞ = ω2 − iω3.

To know the hyperkähler metric, it’s enough to know the holomorphic symplectic forms Ωζ .

Strategy:

• Wrapping a line defect L ∈ Aζ around the circle, we get a local operator, whose vacuum

expectation value is a holomorphic function FL on (M, Iζ).

• These functions decompose into FL =
∑

γ Ω(L, γ;u, ζ)Xγ where Xγ are holomorphic

Darboux coordinates on M. Thus (M, Iζ ,Ωζ) admits distinguished local Darboux coor-

dinate systems.

[explain why they are Darboux coordinates, by “secondary operations”?] [explain whatM is and

what these coordinates are, in the case of class S theories; cluster-type structure] The functions

Xγ :

• are piecewise-holomorphic, with jumps determined by the KΩ(γ)
γ at the walls of the BPS

scattering diagram
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• have asymptotics as ζ → 0 given by Xγ ∼ exp(ζ−1Zγ) (when θγ = 0)

• have a reality condition as ζ → −1/ζ .

We can write down an integral equation whose solutions would have this property: (again when

θγ = 0)

Xγ(u, ζ) = X sf
γ (u, ζ) exp

[
− 1

4πi

∑
µ

Ω(µ;u)⟨γ, µ⟩
∫
ℓµ

dζ ′

ζ ′
ζ ′ + ζ

ζ ′ − ζ
log(1−Xµ(ζ

′))

]
,

where the contours of integration are the lines of the BPS scattering diagram,

ℓµ = ZµR−.

Solving this integral equation in practice we can construct a metric (in very simple examples!)

Moreover, experimentally, we can compute Hitchin’s metric on the θ = 0 locus insideM in some

class S examples. The two agree!

[also theorems about asymptotics…]
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