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♦♦♦

Natural studies can be roughly classified into active and passive

♦♦♦



♦♦♦

Natural studies can be roughly classified into active and passive

• In active approach we try to interfere with Nature and see what happens

• In passive approach we sit back, observe, and reflect

Sometimes we reflect on the effects of our own prior interference

♦♦♦
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The story of gauge theory as the theory of fundamental forces

is a combination of both

♦♦♦



♦♦♦

The complicated question of how we perceive NOW

is pushed into the pile of questions on computing the boundary value

of analytic function of complex metric on spacetime

♦♦♦
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QUANTUM FIELD THEORY

♦♦♦



♦♦♦

Reconstructs reality with the flow of time

from statistics of events on a four dimensional Riemannian manifold

♦♦♦



♦♦♦
We shall illustrate this point

by studying non-peturbative effects in Yang-Mills theory

field theory analogues of tunneling
Following Callan,Gross,Dashen, ′t Hooft, Polyakov , Coleman

♦♦♦



♦♦♦

Maxwell theory of electromagnetism

is a field theory version of harmonic oscillator

x

U(x)

♦♦♦



♦♦♦
Anharmonic analogue of Maxwell theory

x

U(x)

YANG-MILLS THEORY

S =

∫
M4

1

4g2
TrFA ∧ ?FA +

ϑ

2π
TrFA ∧ FA

FA = dA +
1

2
[A,A]

A is a connection 1-form, locally A ∈ Ω1(M4)⊗ g
We shall discuss gauge groups G = U(N)

g = Lie(G ) (anti-)hermitian N × N matrices
♦♦♦
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What is effective field theory

for YANG-MILLS THEORY?

♦♦♦



Too difficult in 4d : Dimensional reduction from 4d to 3d

A −→ (A,Φ)

S3 =
1

4g2

∫
M3

TrFA ∧ ?FA + TrDAΦ ∧ ?DAΦ

Gauge group effectively breaks down to the maximal torus T ⊂ G



One can show, that effective dynamics is that of T -gauge theory

A −→ A

Seff =
1

4g2

∫
M3

dA ∧ ?dA +

∫
M3

Λ2cos(aD)

where the potential cos(aD) generates the effects of magnetic monopoles
Polyakov

daD = ?3dA

In the microscopic theory monopoles are non-singular solutions,
representing (complex) saddles, ’t Hooft-Polyakov monopoles

Bogomolny equations DAΦ = ?FA

Far from the core look like solutions to Maxwell equations
on a manifold of nontrivial topology, with non-contractible S2

the details are encoded in Λ2



MAGNETIC FRAME

Seff =
g2

2

∫
M3

daD ∧ ?daD +

∫
M3

Λ2cos(aD)

The dual photon aD is massive

electric charges are confined

〈e
∮

C a〉 = 〈e
∫

Σ ?daD 〉 ∼ e−σΛArea(Σ) ∂Σ = C



♦♦♦

Example of exact computation in 4d?

Interacting non-abelian gauge theory

Learn about effective description at low energy

♦♦♦
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Supersymmetric Yang-Mills theory

♦♦♦



♦♦♦

Supersymmetric Yang-Mills theory

Quantum field theory on non-commutative space-time

Coordinate functions obey [xµ, xν ] = 0, {ϑα, ϑβ} = 0

♦♦♦



♦♦♦

Supersymmetric Yang-Mills theory

A(x , ϑ) = Φ(x) + ϑαλα(x) + ϑαϑβ̇(σµ)αβ̇Aµ(x) + . . .

Fields of different spin are packaged together

♦♦♦



♦♦♦

Supersymmetric Yang-Mills theory

S =

∫
M4

1

4g2
TrFA ∧ ?FA +

ϑ

2π
TrFA ∧ FA+∫

M4

1

4g2

(
TrDAφ ∧ ?DAφ̄+ Tr[φ, φ̄]2

)
+

+

∫
M4

Trψ̄/DAψ + Tr
(
ψ[φ̄, ψ] + ψ̄[φ, ψ̄]

)
In the minimal N = 2 theory:

the bosons are the gauge field A and the complex adjoint scalar φ, φ̄
the fermions are adjoint valued ψ and ψ̄ Weyl spinors of opposite chirality

♦♦♦



♦♦♦

Field theory analogues of saddle complex trajectories

INSTANTONS

Finite action solutions to

FA = − ? FA

real in Euclidean spacetime R4

♦♦♦



♦♦♦

INSTANTONS

The simplest solution can be found by the ansatz

A = f (r)g−1dg , g : S3 → G

In radial coordinates on R4\0 = R+ × S3

The radial evolution is equivalent to the anharmonic oscillator

1

2

(
r
df

dr

)2

+
1

4
f 2(1− f )2

Belavin−Polyakov−Schwarz−Tyupkin solution

♦♦♦



♦♦♦

INSTANTONS

Typical instanton solution looks like a non-linear superposition

of k localized objects - events - instances

− 1

8π2

∫
M4

Tr FA ∧ FA = k

♦♦♦



♦♦♦
INSTANTONS of charge k

− 1

8π2

∫
M4

TrFA ∧ FA = k ∈ Z

Solutions have parameters (moduli)

Mk (N) =

{
A |FA = − ? FA,

∫
TrF 2

A = −8π2k

}
/G∞

G∞: group of gauge transformations A 7→ g−1Ag + g−1dg

g(x)→ 1 , x →∞

♦♦♦



♦♦♦

INSTANTONS moduli space

Remarkably, Mk (N) = complexified phase space
Atiyah−Hitchin−Drinfeld−Manin

of some auxiliary classical mechanical system

♦♦♦



♦♦♦

INSTANTONS DOMINATE

With some work, N = 2 susy gauge theory path integral

exactly reduces to the sum of integrals

Zk =

∫
Mk (N)

Θk

of d-closed differential forms Θk ,
obtained by careful expansion of S around instanton solutions

♦♦♦



♦♦♦

Some steps : • Ω-deformation + Higgsing

Rotational Spin(4)-symmetry + constant gauge transformations

♦♦♦



♦♦♦

Some steps : Localization

Fixed point formulas

Zk (a, ε1, ε2) =
∑
λ

µλ(a, ε1, ε2)

where the sum is over collections

λ =
(
λ(1), . . . , λ(N)

)
,

N∑
α=1

|λ(α)| = k

of Young diagrams, representing fixed points, i.e. zeroes of V

♦♦♦



♦♦♦

Some steps : Localization on partly compactified Mk (N)

Uses noncommutative deformation

[xµ, xν ] = iΘµν

Fµν = ∂µAν − ∂νAµ + Aµ ? Aν − Aν ? Aµ

NN+A. Schwarz

Mathematically, replace vector bundles by sheaves
Gieseker,Nakajima

♦♦♦



♦♦♦
Fixed point formulas: the sum over collections

λ =
(
λ(1), . . . , λ(N)

)
,

N∑
α=1

|λ(α)| = k

of Young diagrams, representing fixed points, i.e. zeroes of V, on Mk (N)

♦♦♦



♦♦♦

2-Gamma function

Γ2(a; ε1, ε2) ∼
∞∏

i ,j=1

(a + ε1(i − 1) + ε2(j − 1)) =

= exp
d

ds

∣∣∣∣∣
s=0

Λs

Γ(s)

∫ ∞
0

ts dt

t

e−ta

(1− e−tε1)(1− e−tε2)

Functional equation

Γ2(a; ε1, ε2)Γ2(a + ε1 + ε2; ε1, ε2)

Γ2(a + ε1; ε1, ε2)Γ2(a + ε2; ε1, ε2)
=

Λ

a

♦♦♦



Fixed point contribution

µλ(a, ε1, ε2) = exp
1

4

∫ ∫
dx1dx2f

′′
λ (x1)f

′′
λ (x2)γε1,ε2(x1 − x2)

NN+A.Okounkov

is one-loop computation in quantum field theory

γε1,ε2(x) = logΓ2(x ; ε1, ε2)

Mathematically: product of weights of Tfixed pointMk (N)
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Profile of partition(s)

Examples for N = 3
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Profile of partition(s)

Examples for N = 3
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Profile of partition(s)

Examples for N = 3
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♦♦♦

Profile of partition(s) and instanton measure

µλ =
N∏

α,β=1

Kλ(α),λ(β)(aα − aβ; ε1, ε2)

Kλ,µ(a) = Γ2(a; ε1, ε2)×
∏

�=(i ,j)∈λ

1

a + ε1(µi − j) + ε2(i + 1− λt
j )
×

×
∏

�=(i ′,j ′)∈µ

1

a + ε1(i ′ + 1− µt
j ′) + ε2(λi ′ − j ′)

♦♦♦



♦♦♦
The path to effective theory

♦♦♦



♦♦♦

The path to effective theory

Compute the susy partition function

Z(a, ε1, ε2; Λ) =
∞∑

k=0

Λ2Nk
∑

λ, |λ|=k

µλ(a, ε1, ε2)

♦♦♦



♦♦♦

The path to effective theory

Small ε1, ε2 asymptotics of susy partition function

Z(a, ε1, ε2; Λ) = exp
1

ε1ε2
F(a; Λ)+

sub-leading terms in ε1, ε2

♦♦♦



♦♦♦

The low-energy effective theory

Seff =

∫
M4

ταβ(a)Fα,− ∧ F β,− − τ̄αβ(a)Fα,+ ∧ F β,++

+

∫
M4

Imταβ(a, ā)daα ∧ ?dāβ+

fermions

ταβ =
∂2F(a; Λ)

∂aα∂aβ

describes N − 1 photons Aα,
interacting with N − 1 complex massless scalars aα

♦♦♦



♦♦♦

Seiberg-Witten geometry

Seff =

∫
M4

ταβ(a)Fα,− ∧ F β,− − τ̄αβ(a)Fα,+ ∧ F β,++

+

∫
M4

Imταβ(a, ā)daα ∧ ?dāβ+

fermions

ταβ =
∂2F(a; Λ)

∂aα∂aβ

with holomorphic F cannot describe unitary theory for all a
as kinetic term for scalars and effective couplings for photons

cannot be everywhere positive definite

♦♦♦



♦♦♦

Seiberg-Witten geometry

way out: electric-magnetic duality

a 7→ aD =
∂F

∂a
, Fα,− 7→ ταβF

β,− , τ 7→ −τ−1

♦♦♦



♦♦♦
emergent Seiberg-Witten geometry

DEFINE the Y (x) observables

Y (x)|λ =
N∏
α=1

∏
(i ,j)=�∈∂+λ(α)(x − aα − ε1(i − 1)− ε2(j − 1))∏

(i ′,j ′)=�∈∂−λ(α)(x − aα − ε1i ′ − ε2j ′)

♦♦♦



♦♦♦

Non-perturbative Dyson-Schwinger equations

〈
Y (x + ε1 + ε2) +

Λ2N

Y (x)

〉
has no poles in x

♦♦♦



♦♦♦

DYSON-SCHWINGER: INVARIANCE OF (PATH) INTEGRAL

〈O1(x1) . . .On(xn)〉 =
1

Z

∫
Γ
DΦ e−

1
~S[Φ] O1(x1) . . .On(xn)

UNDER “SMALL” DEFORMATIONS
OF THE INTEGRATION CONTOUR

Φ −→ Φ + δΦ

♦♦♦



♦♦♦

DYSON-SCHWINGER EQUATIONS

QUANTUM EQUATIONS OF MOTION

〈O1(x1) . . .On(xn)δS [Φ]〉 =

~
n∑

i=1

〈O1(x1) . . .Oi−1(xi−1)δOi (xi )Oi+1(xi+1) . . .On(xn)〉

♦♦♦



♦♦♦

DYSON-SCHWINGER EQUATIONS

WITH SOME LUCK

=

GOOD CHOICE OF (POSSIBLY NON-LOCAL) OBSERVABLES

Oi (x)

AND IN SOME LIMIT (CLASSICAL, PLANAR, ... )

THE DS EQUATIONS FORM A CLOSED SYSTEM

♦♦♦



MATRIX MODEL

∫
N×N

dΦe−
1
~TrV (Φ)

PLANAR LIMIT: λ = ~N FIXED

~→ 0, N →∞

DS eqs =⇒ LOOP EQUATIONS

Define y(x) = 〈Tr
1

x − Φ
〉+ V ′(x)



♦♦♦

MATRIX MODEL DS EQUATIONS

y(x)2 = V ′(x)2 + gp−2(x)

gp−2(x) = deg p − 2 polynomial in x

CLASSICAL GEOMETRY

♦



♦

QFT PATH INTEGRAL INVOLVES SUMMATION

OVER TOPOLOGICAL SECTORS

♦♦♦



♦

NON-PERTURBATIVE DS EQUATIONS

IDENTITIES DERIVED BY

Large “DEFORMATIONS” OF THE PATH INTEGRAL CONTOUR

A ∈ Ak −→ A + δA ∈ Ak+1

GRAFTING A POINT-LIKE INSTANTON

♦♦♦



♦♦♦

MAIN CLAIM: “qq-characters”

There are combinations of Y (x)’s

such that their expectation values have no poles in x

Non-perturbative Dyson-Schwinger equations!

♦♦♦



♦♦♦

Back to our example of U(N) theory

♦♦♦



In the ε1, ε2 → 0 limit DS equations become algebraic

Y (x) +
Λ2N

Y (x)
= xN + u2x

N−2 + . . .+ uN

Parameters u2, . . . , uN are determined from

aα =
1

2πi

∮
Aα

x
dY

Y

The poles and zeroes of the random function Y (x)
Accumulate, in the ε1, ε2 → 0 limit, to N cuts

Close to a1, . . ., aN



For theories with gauge groups G = ×iU(Ni )

x-plane

density support Ii,a

Ai,aA-cycle C�x�

The poles and zeroes of random functions Yi (x)
accumulate close to ai ,1, . . ., ai ,N



♦♦♦
Algebraic curve: a ramified cover of x-plane

ri(C
phys
�x� )mirror sheet

Ii,a��

B-cycle Bi,a�,a�� physical sheet C(phys)
�x�

Ii,a�

aαi ,D =
1

2πi

∮
Bi,α

x
dYi

Yi

Riemann identities∑
i ,α

dai ,α ∧ dai ,D
α = 0

♦♦♦



♦♦♦

Complex symplectic geometry

Therefore, locally at least, there exists the symplectic potential

ai ,D
α =

∂F

∂ai ,α

Electric-magnetic duality = choice of A-cycles

♦♦♦



♦♦♦

Again, but differently: complex phase spaces

Y (x) +
Λ2N

Y (x)
= xN + u2x

N−2 + . . .+ uN

The family of complex curves Cu, u ∈ CN−1

♦♦♦



♦♦♦

Integrable complexification of a phase space

N∑
i=1

dxi ∧ dzi ,
∑

i

xi = 0 , (zi ) ∼ (zi + s),

H2 =
N∑

i=1

1

2
x2

i + Λ2
N∑

i=1

ezi−zi+1 , zN+1 ≡ z1

Periodic N-particle Toda chain

♦♦♦



♦♦♦
Back to start: complex phase spaces

Y (x) +
Λ2N

Y (x)
= xN + u2x

N−2 + . . .+ uN

Auxiliary linear problem
Has gauge theory origin

ψi+1 + xiψi + Λ2ezi−zi+1ψi−1 = xψi

ψi+N = Yψi

Compatibility of these equations =⇒ (x ,Y ) ∈ Cu

Krichever approach

with uk = Hk (x , z), k = 2, . . . ,N

{Hk ,Hl} =
∑

i

∂Hk

∂xi

∂Hl

∂zi
− ∂Hl

∂xi

∂Hk

∂zi
= 0

♦♦♦



FURTHER DEVELOPMENTS



FURTHER DEVELOPMENTS
More general gauge theories with matter

NN+V .Pestun′2012,′2023

String theory realizations

E .Witten,C .Vafa,D.Gaiotto,G .Moore,A.Neitzke,L.Alday,Y .Tachikawa,...

♦♦♦



♦♦♦

FURTHER DEVELOPMENTS

Deeper notions of symmetry, quantization, integrability

Instanton counting on R4 at ε1 = −ε2 = gs

= topological string computations on a local Calabi-Yau 3fold

♦♦♦



FURTHER DEVELOPMENTS Quantizations

Instanton counting on R4 at ε1 = ~, ε2 → 0

= QUANTUM INTEGRABLE SYSTEMS

Ĥ2 =
N∑

i=1

−1

2

(
~
d

dzi

)2

+ Λ2
N∑

i=1

ezi−zi+1 , zN+1 ≡ z1

For example of pure super−Yang−Mills



♦♦♦

Further developments

Quantizations ε 6= 0

Instanton counting on R4 at ε1, ε2 6= 0

= Analytically continued conformal field theories in 2d
with S.Jeong ,N.Lee,O.Tsymbaliuk

♦♦♦



♦♦♦

Further developments

Instanton counting on more general M4 at ε1, ε2 6= 0

Predictions/theorems about 2d CFT/Isomonodromic equations
Gamayun−Iorgov−Lysovii “Kyiv ′′ formula

♦♦♦



♦♦♦

Further developments

Instanton counting on S1 ×M4 at ε1, ε2 6= 0

= Relativistic integrable systems/q-deformed CFTs/massive IFTs

♦♦♦



♦♦♦

Further developments

Instanton counting on S1 × S1 ×M4 at ε1, ε2 6= 0

= Double elliptic integrable systems/q-deformed CFTs/massive IFTs

♦♦♦



Further developments
Instanton counting on S1 ×M6 at ε1, ε2, ε3 6= 0

= Models of crystal melting/quantum spacetime foam
N.Reshetikhin,A.Okounkov ,C .Vafa; A.Iqbal ,NN,A.Okounkov ,C .Vafa

DT-GW correspondence
D.Maulik,NN,A.Okounkov ,R.Pandharipande



♦♦♦

Further developments

Instanton counting on S1 ×M8 at ε1 + ε2 + ε3 + ε4 = 0

= Models of 4d crystals /3d tesselations
Magnificent Four theory ,NN′2017−

♦♦♦



OPEN PROBLEMS and DIRECTIONS of RESEARCH

• Instanton counting for general gauge groups/matter contents

• Hyperkähler geometry of moduli space of vacua for M4 = S1 × R3

• Higher category structure (interfaces, stable envelopes, junctions)
∞−dim version of Maulik−Okounkov , in progress with M.Dedushenko

• N = 1 theories (periods as opposed to intersection numbers)

• CATEGORIFY S1 −→ R1



OTHER RELATED TOPICS

Syllabus in lieu of abstract
Classical geometry of gauge theory: connections as maps.
Instanton connections and holomorphic maps. Classifying spaces:
Milnor construction, infinite Grassmanians, Cartan model of de
Rham complex. Equivariant cohomology and supersymmetric
quantum mechanics. Two dimensional gauge theory, Hurwitz
theory and matrix models. Supersymmetric gauge theory in four
dimensions, localization to random partitions, comparison to
random matrices. Seiberg-Witten geometry, Omega-deformation,
quantum integrability, isomonodromic deformations, conformal
blocks.


