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1 Introduction

This is a review of the derivation of some holographic dualities between solvable models of
two-dimensional gravity and ensembles of random matrices. I will focus on the all-order
perturbative (in the topological expansion) considerations that lead to the dualities.

Due to time constraints I will have to skip some important topics such as the Sachdev-
Ye-Kitaev (SYK) model, or the relevance of Jackiw-Teitelboim gravity to higher-dimensional
near-extremal black holes.

Several suggested calculations, or intermediate steps to fill, are in red boxes.

Some parts of these lectures overlap with the review written with T. Mertens for
Living Reviews in Relativity [1]. Given the mathematical background from the first week,
I decided to focus on more technical aspects which were not covered in that review.

2 Lecture 1: Jackiw-Teitelboim Gravity

2.1 Motivation: Holography and the central dogma

In the 1970’s it was uncovered that black holes evolve following dynamical laws that take
the same form as those of thermodynamics. Perhaps the most famous fact is that black
holes have an entropy

S = A

4GN
, (2.1)

as well as a non-vanishing temperature.

The field of black hole thermodynamics evolved over the decades and culminated in the
1990’s with the advent of holography and AdS/CFT. The main lesson, whose implications
we are still exploring, is that black holes not only behave in as thermodynamic systems, they
actually evolve as unitary quantum systems with large but finite entropy! String theory
provided realizations of this relation by assigning specific quantum systems to certain black
holes.

“Central dogma: As seen from the outside, a black hole can be described in terms of a
quantum system with S = A/4GN degrees of freedom, which evolves unitarily under time
evolution,” as stated in [2].

So far the most successful approach to studying quantum gravity is provided by the
gravitational path integral, which produces answers consistent with the central dogma in
highly non-trivial situations. The gravitational path integral was pioneered by Gibbons
and Hawking [3] but it has evolved considerably over the past decades. This consists in
formulating the experiment done on the black hole in path integral language, use this to
determine boundary conditions far from the horizon, and perform a path integral including
fluctuations in the spacetime metric and topology.

The central dogma and the gravitational path integral interpretation are the most pre-
cise in the context of AdS/CFT. The boundary conditions in the gravitational path integral
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are determined at the conformal boundary and according to the holographic dictionary it
should reproduced by a CFT calculation without gravity.

We will study in these lectures theories of two-dimensional gravity with black hole
solutions, particularly Jackiw-Teitelboim (JT) gravity. It has been useful for three purposes
mostly:

• It is a sector describing the low energy dynamics of strongly coupled fermion systems
such as the SYK model [4].

• JT gravity with matter captures quantum effects that become large for higher di-
mensional charged black holes at low temperatures [5–7].

• Black hole information paradox concern situations where gravity seems to be in ten-
sion with the central dogma. Examples are the Page curve and the late time behavior
of correlators. Thanks to toy models such as JT gravity, it was discovered recently
that spacetimes with non-trivial topologies such as spacetime wormholes play a cen-
tral role in resolving these puzzles. Aspects of this application of JT gravity will be
the main focus of this series of lectures.

2.2 Two-dimensional dilaton gravity

The goal is to construct a theory of two-dimensional gravity with a clear semiclassical
limit presenting black hole solutions which we can use to explore the consequences of the
gravitational path integral.

In two dimensions, the Einstein-Hilbert action is topological and does not suppress
fluctuations

χ = 1
4π
( ∫

M

√
gR+ 2

∮
∂M

√
hK

)
= 2 − 2g − n, (2.2)

given by the Euler characteristic. This fact does not imply that the theory is trivial. In
the path integral formulation one needs to take care of the measure and its gauge fixing.
This leads to an inherently strongly coupled theory1.

To solve this problem we follow and introduce a scalar field, the dilaton Φ, following
[8, 9]. We consider the action, written in Euclidean signature

I = − S0
4π

∫
M

√
gR︸ ︷︷ ︸

topological

− 1
2

∫
M

√
g(ΦR+ U(Φ))︸ ︷︷ ︸

dynamical

−
∮
∂M

√
hΦK︸ ︷︷ ︸

Gibbons-Hawking-York term

(2.3)

M is a two-dimensional manifold with metric g and with a boundary ∂M with metric h.
The action has three terms which play different roles:

1To make this more precise, this theory can be put in the context of the non-critical string since a
trivial matter CFT can be presented as the (2, 3) minimal model. Therefore this theory would be the (2, 3)
minimal string.
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Topological term Depends on the parameter S0. Responsible to suppress topology
change but does not care about perturbative metric fluctuations.

Dynamical term This term is responsible for determining the classical solutions. The
scalar field Φ acts as a two-dimensional Planck “mass”. The classical limit corresponds to
regions where Φ is large, in a way we will see later. This term depends on a single function
U(Φ), the dilaton potential.

Boundary term This is the well-known Gibbons-Hawking-York term that makes the
variational problem well-defined [3]. It particularly plays an important role in JT gravity,
as we will see later.

Most general dilaton-gravity

Show that this is the most general two-dimensional dilaton gravity at the two-
derivative level, up to field redefinitions

Jackiw-Teitelboim (JT) gravity corresponds to a theory with a linear dilaton potential

U(Φ) = −ΛΦ + U0. (2.4)

When Λ ̸= 0 we can shift Φ to eliminate U0, after redefining S0. After this manipulation
the action becomes

IJT = −S0
4π

∫
M

√
gR− 1

2

∫
M

√
gΦ(R− Λ) −

∮
∂M

√
hΦK (2.5)

Some comments:

The equation of motion for the dilaton imposes that classical geometries are spacetimes
with constant curvature R = Λ. The equation of motion for the metric determines the
spacetime profile of the dilaton.

We can consider anti deSitter (AdS) gravity with Λ < 0, or deSitter (dS) gravity with
Λ > 0. When Λ = 0 we cannot remove U0 which remains as a parameter. The theory
becomes the CGHS model [10]. In these lectures, we will focus mostly on AdS and work
in units with Λ = −2.

One can also include matter fields. In the simplest case they do not couple to the
dilaton, e.g. for a massive scalar field we add the following term

Imatter[g, χ] = 1
2

∫ √
g{(∂χ)2 +m2χ2}. (2.6)

When matter is included, we will assume it takes this form. This has the advantage of
making the theory solvable as we might see later.
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2.3 JT gravity as a BF theory

Let us rewrite the action of JT gravity in the first-order formulation. For simplicity,
consider surfaces without boundaries first. This means we want to replace the path integral
over the metric gµν by the objects:

• Frame one-form ea = eaµ dxµ with a = 1, 2. They are determined by the metric
through the relation gµν = eaµe

b
νδab.

• Spin connection ωab = ω
[ab]
µ dxµ. Its not an independent field since its required to

solve the torsion-free constraint dea + ωab ∧ eb = 0.

The following relations are useful ωab = ϵabω, d2x
√
g = e1 ∧ e2, and d2x

√
gR = 2 dω.

The dynamical bulk term in the JT gravity action can be written in terms of the frame
and spin connection as

1
2

∫
d2x

√
gΦ(R+ 2) =

∫
M

Φ(dω + e1 ∧ e2) (2.7)

In a quantum-mechanical treatment we need to incorporate the torsionless constraint that
determines ω in terms of the frame forms. This can be remedied by integrating-in Lagrange
multipliers X1 and X2 as follows∫

M

[
Φ(dω + e1 ∧ e2) +Xa(dea + ωab ∧ eb)

]
. (2.8)

Now define the following quantities

A = e1λ1 + e2λ2 + ωλ3,

B = 2i(X1λ1 +X2λ2 + Φλ3),

where {λ1, λ2, λ3} are 2 × 2 matrices that generate the Lie algebra sl(2,R), chosen with
the normalization condition Trλiλj = ηij/2 with η = diag(1, 1,−1). The signature of η
reflects the fact that SL(2,R) is a non-compact group.

The factor of 2 in B is convention. The factor of i is such that the contour appropriate
to a Lagrange multiplier takes place in the real B axis, or equivalently imaginary Φ.

In terms of these adjoint-valued one-form A and zero-form B, the JT gravity action,
including the torsion constraint, can be written in the suggestive form

I = −i
∫

TrBF, F = dA+A ∧A. (2.9)

This is the action of a BF theory [11] with group SL(2,R). The path integral of this theory
on a surface Σ localizes into the space T of flat SL(2,R) connections (with F = 0) modulo
gauge transformations. The reason is that B acts as a Lagrange multiplier∫

dB e−I =
∫

dB ei
∫

TrBF = δ(F ). (2.10)

What is the measure of integration over moduli space? This will be relevant for lecture 2.

Even though we matched the bulk actions, the connection between JT gravity and BF
theory is subtle for the following reasons:
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Flat connection ̸= geometry The moduli space T has multiple components distin-
guished by a topological invariant. Only one of these components can be related to a
hyperbolic metric. (This technically includes also a choice of spin structure. To remove
this we can focus on PSL(2,R). More discussion on such global issues later.)

Large Diffeomorphisms Gravity contains large diffeomorphisms as a gauge symmetry,
the mapping class group, that are not incorporated into the gauge transformations of the
BF description. This restrict the appropriate component of flat connections T further to
the moduli space of hyperbolic surfaces M.

Sum over topologies In gravity we should sum over topologies, as we will do in Lecture
2. This is not naturally included in the gauge theory description but should be done by
hand.

Boundaries The boundary conditions natural from the gravity perspective do not have a
natural description in the gauge theory language. Therefore in the presence of boundaries,
a mix of first- and second-order manipulations seems to be unavoidable.

Poisson Sigma Models

For general dilaton potential show that the gravitational action can be written locally
as a Poisson sigma model [12, 13]. The form of the algebra depends explicitly on
the dilaton potential.

2.4 Classical Solutions and Boundary Conditions

Before attempting to evaluate the gravitational path integral in JT gravity we need to
specify which boundary conditions we want to impose. This requires some physical consid-
erations that we now describe. A lack of understanding of the physically relevant boundary
condition was partly the source of confusion regarding AdS2 in the past.

The equation of motion for the dilaton imposes R = −2. Let us assume first that
the dilaton is constant. The equation of motion arising from varying the metric, with the
assumption of a constant dilaton Φ, implies that U(Φ) = 0 and therefore Φ = 0. This
implies that locally all solutions have the metric of two-dimensional AdS2 space. Globally
there can be physically different choices:

Global Patch In Lorentzian signature, this patch has the topology of a strip with two
boundaries

z = 0 z = π
2 ds2 = 4−dt2 + dz2

sin2 2z (2.11)
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This patch represents the maximal extension of AdS2. The red line shows the worldline of
an observer sitting at a fixed spatial z. The two boundaries are in causal contact, and can
therefore be interpreted as an eternal wormhole connecting the two boundaries.

Poincare Patch In Lorentzian signature this patch has a single boundary and covers a
region inside the global patch

Z = 0

Z = ∞

ds2 = −dT 2 + dZ2

Z2 (2.12)

The red line corresponds to an observer sitting at a constant Z. This looks closer to a
black hole with the dashed line representing the event horizon. There are regions in the
bulk that are causally disconnected from the boundary. Nevertheless the horizon is at an
infinite proper distance and has zero-temperature, making it the two-dimensional analog
of vacuum AdS in higher dimensions. The metric on this patch written above simplifies
the action of the PSL(2,R) isometry group

X± → aX± + b

cX± + d
, X± = T ± Z, (2.13)

where ad− bc = 1 and the four parameters are defined up to an overall sign (which would
be detected by a fermion).

Black Hole Patch This patch corresponds truly to a black hole geometry, and it is
sometimes called the Rindler patch:

ρ = ∞

ρ = 0

ds2 = −4π2

β2 sinh2 ρdt2 + dρ2. (2.14)

The red lines are worldlines of observers sitting at fixed ρ. The dashed lines are event
horizon for observers at both boundaries. Therefore, there are points in the bulk that are
causally disconnected, and the horizon is at a finite distance from the boundary (in our
coordinates corresponds to ρ = 0), and has a finite temperature given by 1/β. In Euclidean
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signature, the geometry becomes the hyperbolic disk with the horizon at the origin

Euclidean

ρ

ds2 = sinh2 ρdθ2 + dρ2, θ = 2πtE
β

.

According to holography, quantum gravity in AdS2 should be dual to a quantum me-
chanical theory living on the boundary. Since the Rindler patch comes with two boundaries
there should be two copies of that theory in some specific state. The gravitational path
integral over half the disk prepares the so-called thermo-field double [14]

|TFD⟩ =
∑
n

e−βEn/2|En⟩L ⊗ |En⟩R (2.15)

and the path integral over the full disk computes the overlap

⟨TFD|TFD⟩ =
∑
n

e−βEn = Tr(e−βH),

= Z(β), (2.16)

which can also be interpreted as the thermal partition function in the canonical ensemble of
the putative quantum system describing the black hole. This is clear in Euclidean signature;
the boundary of the hyperbolic disk is a circle and the path integral of a quantum system
on a circle is a thermal partition function.

So far we assumed that the dilaton was constant Φ = 0. But this is problematic.
Which patch are we supposed to choose? What determines the relation between bulk time
and boundary time in the quantum mechanical description?

The solution [15–18] is to use boundary conditions that break the conformal symmetry
of AdS2 by turning on a source for the dilaton. This is something special that happens in
two dimensions; in higher-dimensional version of AdS/CFT it is safe to work with theories
that are exactly conformal invariant. To implement this, put a cutoff in the geometry and
impose Dirichlet boundary conditions

ds2|∂M = dt2
ε2 , Φ|∂M = Φr

ε
, ε → 0. (2.17)

This leads to the so-called nearly-AdS space, or NAdS2. The geometry, either in Lorentz
or Euclidean signature, will now look like the following, where we draw the cut-off curve
in black:

Lorentzian Euclidean

(2.18)
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At finite temperature the Rindler patch is selected, or at zero-temperatures the Poincare
one. The global patch does not support a solution for the dilaton with the appropriate
boundary conditions (unless one deforms the theory in a special way [19]). The geometry
can still be taken to be locally exactly AdS everywhere. We can work in a gauge where
all the information of metric fluctuations is encoded in the shape of the boundary curve
consistent with (2.17).

Symmetries The asymptotic symmetries of AdS2 are the one-dimensional conformal
group of time reparametrizations. This is spontaneously broken to the global conformal
group SL(2,R) of isometries by the background. Moreover, the conformal symmetry is
explicitly broken by the choice of boundary conditions since Φr is dimensionful. Another
way to see this is that classically the dilaton is proportional to Φ ∝ cosh ρ and its manifestly
non-invariant.

The Schwarzian mode The off-shell action of a given boundary curve consistent with
the choice of boundary conditions in (2.17) is the so-called Schwarzian action, which ap-
peared first in the context of the SYK model [20–23]. This can be done in Lorentzian
signature but since most of our calculations in the next section are carried out naturally
in Euclidean signature we will choose the latter.

We work in the hyperbolic disk with coordinates (t̂, ρ̂). The reason to relabel them is
that we want to save t for the boundary time. Let us denote the location of the boundary
by (t̂, ρ̂) = (t̂ = f(t), ρ̂ = ρ(t)). Since Euclidean time is compact the first variable f(t)
should satisfy

f(t) ∈ Diff(S1), f(t+ β) = f(t) + β. (2.19)

What about ρ(t)? This is determined by the Dirichlet boundary condition on the metric

ds2|bdy =
(
ρ′(t)2 + 4π2

β
sinh2 ρ(t) f ′(t)2

)
dt2 ∼ 4π2

β

e2ρ

4 f ′(t) dt2 = 1
ε2 dt2. (2.20)

This condition determines ρ(t) in terms of f(t) and this relation is quite simple close to
the conformal boundary of AdS since ρ ∼ − log ε − log f ′(t). This justifies dropping the
first term above.

The conclusion of the previous paragraph is that the boundary degree of freedom is
parametrized by a single function f(t) ∈ Diff(S1), but this space is clearly too large. Two
boundary curves related by the isometries of AdS2 should be considered equivalent even if
they correspond to different profiles f(t). To find this identification, it is simpler to go to
the Poincare patch coordinates, and use the fact that since we are close to the conformal
boundary Z ∼ 0. The result is

F → aF + b

cF + d
, F = β

π
tan πf

β
, ad− bc = 1. (2.21)

Therefore the space of physically distinct boundary curves is Diff(S1)/PSL(2,R).

We can now evaluate the JT action on such configurations. The topological term gives
−S0 since χ = 1 for the disk. The bulk dynamical term in JT gravity vanishes since locally
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R = −2 everywhere. Finally the boundary term gives

K = 1 + ε2
{

tan πf(t)
β

, t
}

+ O(ε). (2.22)

In the action this multiplies
√
hΦ = Φr/ε

2. The ‘1’ is therefore divergent while the second
term is finite in the vanishing cutoff limit. We can easily remove the divergence by a
boundary local counterterm

∮ √
hΦ which does not affect the variational problem. The

action for the boundary curve (with matter sources turned off) is the Schwarzian theory

−I[f ] = S0︸︷︷︸
from topological term

+ Φr

∫
dt
{

tan πf(t)
β

, t
}

︸ ︷︷ ︸
from dynamical terms

(2.23)

To write the action we lifted the element of Diff(S1)/PSL(2,R) to f(t) ∈ Diff(S1) and we
consistently obtained an action which is invariant under PSL(2,R).

The equation of motion of the Schwarzian action is d
dt{tan πf/β, t} = 0. Up to a

conformal transformation the solution is simply f(t) = t, a circle. This leads to a classical
partition function

logZ ∼ S0 + 2π2Φr

β
, ρ(E) ∼ eS0 e2π

√
2ΦrE . (2.24)

We need to break the conformal symmetry to get a free energy that is reasonable, since
otherwise we could only have either δ(E), a theory of ground states, or 1/E, a continuous
spectrum.

On-shell action

Compute the on-shell action of JT gravity on the hyperbolic disk with the NAdS2
boundary conditions without using the Schwarzian action. Instead solve the equation
of motion for the dilaton and evaluate the action directly and check eqn. (2.24).

What happened with the conformal symmetry? Time-reparemetrizations are broken
by the Schwarzian action. Moreover, global conformal transformations acting on t are also
broken. If Φr is zero, the symmetry is unbroken but fluctuations in the boundary shape
are unsuppressed [15–18]. Equivalently, the low temperature limit of JT gravity is strongly
coupled since the dimensionless coupling is the temperature itself in units of Φr.

2.5 Schwarzian theory: Partition Function

Let us recap what we did in path integral language. First integrate out the dilaton, lo-
calizing to hyperbolic metrics. For the topology of the disk there is only one choice. The
integral over metrics reduces to a choice of boundary curve. Therefore the path integral
reduces to a path integral over the Schwarzian mode:

Z(β) = eS0

∫
[dg][dΦ] e

1
2

∫
M

d2x
√
gΦ(R+2)+

∮
∂M

√
hΦ(K−1) (2.25)

= eS0

∫
[df ] eΦr

∫ β

0 dτ{tan πf(τ)
β

,τ}
. (2.26)
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The measure on the first or second line can be derived from the BF analysis. Write the
metric in the first-order variables and evaluate the symplectic form

Ω = 2
∫

Tr
[
δ1A ∧ δ2A

]
. (2.27)

From this symplectic form one can derive a measure over the Schwarzian mode. This mea-
sure is precisely the natural measure over the coadjoint orbit Diff(S1)/PSL(2,R) derived
in [24, 25].

Multiple ways have been developed to perform the Schwarzian path integral exactly.
Regarding the partition function, we can use the Duistermaat-Heckman theorem as pro-
posed by Stanford and Witten [26]. This is applicable since the integration space is sym-
plectic and the Schwarzian derivative actually generates, via Poisson brackets, a U(1)
symmetry that corresponds to time translations. This theorem implies two things 1) that
the Schwarzian path integral is one-loop exact around fixed-points of the U(1) symmetry;
and 2) that the one-loop determinant is equal to the product of “rotation angles”. The
output of the Gaussian integral is 1/

√
det′D, where D is the operator that generates the

rotation symmetry of the fixed point, and the notation det′ means that modes of D that
can be generated by symmetries of the disk should be discarded. We note that the modes
that are discarded are zero-modes in the sense that they do not appear in the action or
in the symplectic form, but they are in general not zero-modes of D. So in general a few
eigenvalues of D have to be omitted by hand.

In our case D = ∂t − 2π/β∂f the second term meaning we need to shift f so that
f(t) = t is indeed a fixed point. A Fourier mode expansion of δf = f − t leads to

Z(β) = e
S0+ 2π2Φr

β
∏
n≥2

β

Φrn
= Φ3/2

r

4
√
πβ3/2 e

S0+ π2
β . (2.28)

It is clear that the rotation angle is proportional to Φrn/β, while the fact that the prefactor
is one is a consequence of a choice of normalization of the symplectic form. This normal-
ization is arbitrary until we include higher topologies, which we will do in the next lecture.
From now on we will set Φr = 1/2 for simplicity. The linealization of the isometries leads
to δf ∼ ei2πnt/β with n = −1, 0, 1 and hence the restricted range over n. The infinite
product was taken via zeta-function regularization.

We can interpret (2.28) in holography. The partition function of such a system with
Hilbert space HBH and Hamiltonian H would be

Z(β) = TrHBH e
−βH =

∫
dE ρ(E) e−βE , ρ(E) =

∑
n

δ(E − En), (2.29)

where En is a discrete set of states of the quantum system describing the black hole. We can
the exact Schwarzian partition function to infer what the density of states of this quantum
system should be. An inverse Laplace transform of Eq. (2.28) gives

ρJT(E) = eS0

4π2 sinh
(
2π

√
E
)
. (2.30)
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This result is nonperturbative in Φr, which suppresses perturbative metric fluctuations,
but leading order in S0.

Surprisingly, JT gravity on the disk with matter is also exactly solvable, even though
correlators are no one-loop exact and no localization applies. The path integral with matter
can be derived using the relation between Diff(S1)/PSL(2,R), representation theory of
Virasoro, and Liouville CFT. This was the approach of Mertens, GJT, and Verlinde [27].
The results are reviewed in section 3 of [1].

2.6 JT gravity and near-extremal black holes

Besides being a toy model of quantum gravity and its relevance to the SYK model, JT grav-
ity also describes the dynamics of certain higher-dimensional geometries. Near-extremal
black holes universally have an AdS2 × XD−2 throat with an emergent isometry that in-
cludes the 1d conformal group. We can consider this in an asymptotically MD space which
might be AdS or flat.

Asymptotically MD

Horizon

A0

AdS2 × XD−2

(2.31)

It is useful to study the dynamics separately in the throat, and in the far-away region, and
glue. Old idea implemented in multiple examples, recently [28–31]. For example:

Reissner-Nordstrom:

AdS2 × S2

→

AdS2

(2.32)

The gluing to the asymptotically flat region (which breaks the conformal symmetry) selects
the Rindler patch time as the physical one. Furthermore, asymptotic observable determines
boundary condition at the throat.

Reissner-Nordstrom

Derive the metric near the horizon and identify the presence of an AdS2 factor.

E.g. the entropy arises mainly from near-horizon; Hawking radiation spectrum is
determined by AdS2 boundary two-point function. Higher-dimensional gravity in the throat
is equivalent to JT gravity coupled to matter. Some comments:
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JT-gravity sector: S0 is the extremal Bekenstein-Hawking entropy. The JT metric
gµν arises from 4d metric along temporal and radial directions. The dilaton Φ measures
deviation of Area(X) from extremal value. Near the horizon |Φ| ≪ S0, implying non-linear
dilaton-potential terms suppressed by powers of 1/S0.

Matter sector: Arises from all other KK modes of higher-dimensional metric and mat-
ter. The radius of curvature of AdS and X area comparable, implying a large number of
light matter fields. 2d gauge fields arise from higher-D gauge fields or isometries of X. Near
the horizon |Φ| ≪ S0, which implies that matter and dilaton interactions are suppressed
by powers of 1/S0.

Boundary Condition: By including the main corrections from AdS2 induced by the
gluing to the far-away region one can derive the NAdS2 boundary conditions (2.17) and
extract Φr, see for example [32].

The quantum effects from the Schwarzian theory that we discussed above resolved
some long-standing puzzles regarding black hole theormodynamics [33–35], as shown in
[5–7]. This would be a topic of a separate set of lectures, for a quick summary see [36].

3 Lecture 2: Sum over topologies

3.1 Motivation

We have seen that JT gravity has two couplings: Φr, suppressing perturbative fluctuations,
and S0, suppressing topology. This is again something special about two dimensions since
in higher dimensions both roles are played by GN . We have solved the theory exactly in
the first coupling. What about the second one?

A problem we encounter in the exact solution is a continuum spectrum. This connects
with the information paradox as stated by Maldacena [37] which we now recall. Take the
two-point function of some matter field and evaluate it at late times

1
Z

Tr
[
e−βHO(t)O(0)

]
=
∑
n,m

e−βEne−it(Em−En)|⟨n|O|m⟩|2 ∼ Order one. (3.1)

Problem: If we compute this in gravity it decays exponentially with time for arbitrarily
late times.

This is a problem because for a discrete spectrum the late time behavior shouldn’t be
too small. On average the dominant contribution should come from configurations with
En = Em such that

1
Z

Tr
[
e−βHO(t)O(0)

]
∼
∑
n

e−βEn |⟨n|O|n⟩|2 ∼ Order e−S0 . (3.2)

Therefore the problem is correlated to the expectation that the black hole quantum system
is finite dimensional so that eS0 < ∞. In fact all black hole paradoxes are cored in the
tension between a discrete spectrum and gravity. For example, there would be no issue
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with the entropy of Hawking radiation growing forever if the entropy of the black hole
system was infinite.

It is useful to simplify the problem even futher. We can define an observable that is
independent of a choice of operator and moreover is applicable even in pure gravity (where
there is no such notion of a prefer operator in the bulk other than the Hamiltonian itself).
This is the spectral form factor

SFF(t) =
∑
n,m

e−(β+it)Ene−(β−it)Em , (3.3)

so this is clearly a product of partition functions Z(β1)Z(β2) with β1/2 = β ± it. The
quantity starts off at t = 0 as order e2S0 and oscillates erratically around the late-time
mean Z(2β) which is order eS0 and therefore suppressed by a factor of e−S0 with respect
to early times. Its shape is roughly as (figure taken from [1])

The blue line is a member drawn from the GUE ensemble while the red line arises from
averaging over Hamiltonians. One could also average over time windows. The ramp in the
curve is characteristic of level repulsion.

Saad, Shenker and Stanford [38] propose to study pure JT gravity. They show that in
order to see any sign of discreteness of the spectrum it is necessary to include spacetime
wormholes, working at finite S0. In particular they show pure JT gravity is equal to an
average over quantum mechanical theories with a discrete spectra

Zgravity(β1, . . . , βn) =
∫

dH P (H) Tr e−β1H . . .Tr e−βnH . (3.4)

So pure gravity captures the average part of the spectral form factor. The precise ensemble
of theories will involve a matrix potential and a double-scaling limit such that the spectral
curve, defined through y(x± iϵ) = ∓iπe−S0ρdisk(x), is

ρdisk(E) = eS0

4π2 sinh(2π
√
E), ⇒ y(x) = 1

4π sin(2π
√

−x). (3.5)

You learned about matrix models in week 1 and I assume more details on the double-scaling
limit will be explained in C. Johnson’s lectures.

This does not mean that we propose all holographic duals to involve disorder. We do
expect the dual to have a chaotic spectrum. This is defined as a spectrum which shares
statistical features with a random matrix, without necessarily being one. JT gravity is
then simply a toy model that isolates the features of gravity responsible for chaos, namely
spacetime wormholes.
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3.2 Two-boundary wormhole

First consider the two-boundary wormhole with g = 0 and n = 2. This will be part of the
building block for the general answer later.

The JT gravity path integral localizes to an integral over moduli space of hyperbolic
surfaces with no handles and two boundaries. If we ignore boundary modes (which will be
incorporated later) it seems the only moduli is the length of the interior geodesic, together
with a twist.

How can we describe the moduli from the point of view of BF theory? A flat connection
can be described by its holonomies around its non-trivial cycles. In this case we have only
one which we can choose to be the interior geodesic. We denote the holonomy by U ∈ G.
Two holonomies related by conjugation U → RUR−1 with R ∈ G are considered gauge-
equivalent so we only care about the conjugacy class.

For a flat connection to be associated with a geometry, the holonomy should be hy-
perbolic. Any hyperbolic element U can be conjugated to

U = ±
(
eb/2 0
0 e−b/2

)
, (3.6)

where b is the length of the geodesic. If we work with bosonic JT gravity, the overall sign
can be discarded since we are working with PSL(2,R). In the presence of a spin structure,
the overall sign indicates whether fermions are antiperiodic (NS) or periodic (R) around
such cycle. This will be important in later lectures.

However, the length of the geodesic is not the only moduli. In the BF perspective
on JT gravity, gauge transformations are constrained to be trivial along the boundaries.
We can define a gauge-invariant “holonomy” V by parallel transport from one boundary
to the other. One can show that the following combination V UV −1U−1 represents the
holonomy of a contractible cycle which should therefore be trivial. This implies that V
must commute with U when the connection is flat, so they are diagonal on the same basis
V = ±diag(eϱ/2, e−ϱ/2)2. To avoid overcounting we restrict 0 ≤ ϱ ≤ b. The interior moduli
are therefore the length b and twist ϱ.

What is the geometric meaning of the twist? We can separate the hyperbolic cylinder
into two trumpets bounded internally by the geodesic of length b. However there is a new
moduli that arise from the gluing because we can act with a global rotation before gluing.
This gluing is precisely represented in the BF description through V .

β1 β2ϱ

b

(3.7)

2What is the interpretation of the overall sign in a theory with fermions? Before we glue the two
trumpets we can change the sign of fermions, producing a non-equivalent spin structure. For a given choice
of NS/R boundaires, the cylinder will therefore have two choices of internal spin structure.
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This picture hopefully clarifies why ϱ ∼ ϱ+ b. This is perhaps the simplest instance where
the moduli of flat connections in the hyperbolic component (which would not put any
constraint on ϱ) is distinguished from moduli space of hyperbolic surfaces.

The symplectic measure over length and twist is dbdϱ, as we will see later. Since the
path integral over the trumpets naturally do not depend on the twist parameter which is
inherently associated to the gluing, we can integrate-out ϱ from the beginning, leading to
an effective measure bdb over geodesic lengths.

Having described the interior moduli, we need to evaluate the path integral over the
boundary wiggles described by the Schwarzian theory. We can then glue all contributions
as shown in the figure

β1 β2 =
∫ ∞

0
db
∫ b

0
dϱ

ϱ

b b

(3.8)

The calculation is actually very similar to the one in the disk. The path integral
localizes into hyperbolic surfaces and therefore there is no bulk contribution. Since the
interior boundary is a geodesic K = 0 and the boundary term vanishes there. We end
up with a theory very similar to the Schwarzian appearing on the disk but with a slightly
different action that depends on b. The integration manifold is now

Diff(S1)/U(1), (3.9)

since the presence of the inner boundary breaks the group of isometries of the hyperbolic
disk into only rotations. The rotation angles are nevertheless insensitive to the parameter
b other than the fact that less modes are removed by isometries. We instead get∏

n≥1

2β
n

= 1√
4πβ

. (3.10)

Combining this with the value of the Schwarzian action evaluated on the fixed-point gives

Ztrumpet
JT (β, b) = 1√

4πβ
e

− b2
4β . (3.11)

Since the trumpet has the topology of an annulus, S0 does not appear here.

We can now assemble the pieces and glue the contributions to the path integral from
both trumpets together with the measure over interior moduli

Z0,2(β1, β2) =
∫ ∞

0
bdb Ztrumpet

JT (β1, b)Ztrumpet
JT (β1, b), (3.12)

= 1
2π

√
β1β2

β1 + β2
. (3.13)

Some comments on this result:
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Match with matrix integral This is a very robust evidence in favor of the duality
between JT gravity and random matrix models. In the double-scaling limit the leading
order connected average of a product of two partition functions is universal (in a given
symmetry class):

⟨Tre−β1HTre−β2H⟩conn.
g=0,n=2 = 1

2π

√
β1β2

β1 + β2
e−βE0 . (3.14)

This matches our result in JT gravity since we are working in units where the threshold
energy vanishes E0 = 0.

The ramp We can analytically continue this result into complex β1 = β/2 + iT and
β2 = β/2 − iT , producing precisely the spectral form factor. The two-boundary wormhole
will therefore produce precisely the ramp

1
2π

√
β1β2

β1 + β2
= 1

2πβ

√
β2

4 + T 2 → 1
2π

T

β
. (3.15)

Upon inverse Laplace transform this is a direct consequence of level repulsion, which in the
density correlator leads to ⟨ρ(E1)ρ(E2)⟩ ∼ −(E1 − E2)−2.

Three-boundary wormhole We can easily extend this calculation to a surfaces with
no handles and three boundaries. We can glue now three trumpets into a hyperbolic three-
holed sphere. The simplification in this case arises because there is a single hyperbolic
three-holed sphere with given boundary lengths b1, b2 and b3. The gluing measure we
derived applies independently to each of the three boundaries giving

Z0,3(β1, β2, β3) =
∫ ∞

0

∏
i=1,2,3

bi dbi Ztrumpet
JT (βi, bi) =

√
β1β2β3
π3/2 . (3.16)

I’ll leave it as an exercise to check this is the result predicted by the loop equations with
y(x) = 1

4π sin(2π
√

−x).

3.3 Torsion

Surface with more boundaries or more handles will inevitably come with internal moduli
that need to be integrated over. We can connect each boundary to a geodesic via a trumpet
and therefore we can focus first on hyperbolic surfaces with geodesic boundaries. In this
section we will explain how to obtain the measure using the torsion.

To define the path integral of a gauge theory one starts with a Riemannian metric on
the fluctuation field δA such as |δA|2 =

∫
TrδA∧⋆δA which induces a Riemannian measure.

This induces in turn a Riemannian measure on the space of zero-modes. We refer to this
measure as µ0. A one-loop calculation in the framework of the Fadeev-Popov procedure
leads to the following quantum-corrected measure over the moduli space3

µ = µ0 · det′∆0√
det′∆1

= µ0 ·
√

det′∆0√
det′∆2

. (3.17)

3Expand around a given flat connection A0 and define D = d+[A0, ·]. This maps adjoint-valued q-forms
to (q + 1)-forms. The laplacian acting on adjoint-valued forms is ∆ = D∗D + DD∗.
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The first equality makes it clear that the numerator comes from the ghosts and the denom-
inator from the gauge field. The second identity arises from the Hodge decomposition of
forms which implies that det′∆1 = det′∆0 det′∆2. On orientable manifolds we can define a
Hodge star operator implying that det′∆2 = det′∆0 and therefore JT gravity is tree-level
exact. This simlification is not available for unorientable manifolds.

The BF approach gives another description of this calculation. In any dimension,
analytic torsion is a certain ratio of determinants times a classical measure µ0 on the space
of zero-modes [39, 40]. In two dimensions this reduces precisely to the measure µ above.
The important result is that analytic torsion is equivalent to the combinatorial torsion of
Reidemeister [41]. This is a quantity that can be evaluated on a lattice and the result is
completely independent of the lattice. In the continuum limit the definition reduces to
the analytic torsion but we can choose the simplest triangulation for evaluation. This was
proven in [42–45].

In conclusion we have a few possible methods of calculation. The symplectic approach,
which when dealing with bosonic JT gravity on orientable surfaces leads to the Weil-
Petersson measure. This has the drawback of not being applicable for unorientable surfaces
or not being practical for more complicated generalizations such as supersymmetry. The
torsion is instead relatively easy to compute, and has the advantage of being straightforward
to generalize to unorientable surfaces as well as supersymmetry.

The geodesic boundary condition of the trumpet is not obviously related to the bound-
ary condition implicit in the torsion calculation. There is a subtlety in the statement that
the symplectic structure and the torsion define the same measure. On an oriented two-
manifold Σ without boundary, this is true as stated: if Tg is the moduli space of flat
connections with gauge group G on a closed surface of genus g, then the symplectic struc-
ture and the torsion define the same measure µ on Tg (assuming the symplectic structure
is properly normalized). On the other hand, if Σ is an oriented two-manifold of genus g
with n boundary circles, then the symplectic structure and the torsion define measures
on two closely related but slightly different spaces. The symplectic structure determines a
measure µ on what we will call Tg,n (or Tg,n(w⃗) if we wish to be more precise), the moduli
space of flat bundles with prescribed conjugacy classes w⃗ = (w1, · · · , wn) of the holonomies
around the boundaries. The torsion defines a measure τ on what we will call Rg,n, the
moduli space of flat bundles over Σ without a restriction on the boundary holonomies. We
will determine the relation between these two objects after evaluating the torsion.

3.3.1 The combinatorial torsion

The combinatorial torsion can be thought of as a framework dual to that of adjoint-valued
forms. Consider a triangulation of the surfaces with q-dimensional cells and the boundary
operator ∂ mapping q-cells to q − 1-cells.

Instead of adjoint-value forms, we associate to each cell a vector space consisting of
the adjoint representation of the group (this can be thought of as a covariantly constant
section of the associated bundle E to the flat G-bundle). The boundary operator also acts
by restricting the vector to its value at each boundary component.
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The formal definition of the Reidemeister or combinatorial torsion is

τ =

√
det′ ∂†

2∂2√
det′ ∂1∂

†
1

. (3.18)

This object is independent of triangulation and was shown to reduce to the analytic torsion
in the continuum limit.

One can obtain a more useful version of this formula. For simplicity assume H2(Y,E) =
0 (these are the homology groups associated to ∂). The torsion is

τ = α2(s1, . . . , sn2)α0(∂t1, . . . , ∂tn1−n2−r, v1, . . . , vk)
α1(∂s1, . . . , ∂sn2 , u1, . . . , ur, t1, . . . , tn1−n2−r)

. (3.19)

Let us define the objects involved in this formula:

• αq(v1, . . . , vnq ) represents the measure of integration over the vector space living
on the q-cells, when there are nq of them. Since these are copies of the adjoint
representation, a measure on the Lie group will naturally induce a measure.

• s1, . . . , sn2 is a basis of the vector spaces of 2-cells. We assume H2(Y,E) = 0 so the
set of ∂sj are linearly independent.

• u1, . . . , ur where r = dimH1(Y,E). H1(Y,E) is the cotangent bundle to the moduli
space of flat bundles at the point E. Therefore r is the dimension of the moduli
space of flat connections. The set {∂s1, . . . ∂sn2 , u1, . . . , ur} form a basis of 1-cells
annihilated by ∂.

• t1, . . . , tn1−n2−r elements that complete a basis of vector spaces of 1-cells.

• v1, . . . , vk are extra basis vectors of the vector space of 0-cells in case H0(Y,E) ̸= 0.

The torsion is independent of the choice of basis {sj} and {tj}. It does depend on the
choice of {uj}. This is fine since the result is a measure on H1(Y,E), the tangent space to
M.

3.3.2 The measure for JT gravity

Any surface can be decomposed into pairs of pants. Let us begin by analyzing this surface.

What is the moduli space of a sphere with three geodesic holes? Since there are three
boundaries, flat connections will be specified by the holonomy along them which we can
call U , V and W :

U V

W

Y

(3.20)
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Not all these matrices are independent. As the figure makes it clear, a cycle made of the
three boundaries simultaneously would be contractible. This implies that the holonomies
ought to satisfy the constraint

UVW = 1. (3.21)

Finally, we should also mod out by an overall conjugation by a group element

(U, V,W ) ∼= (RUR−1, RV R−1, RWR−1). (3.22)

The constraint is evidently consistent with this identification.

The three matrices gives a total of 9 parameters. The constraint UVW = 1 provides
3 conditions, and moding out by an overall conjugation removes 3 parameters. This leaves
a total of 3 parameters describing the moduli space of the three-holed sphere. These three
parameters can be identified with the three geodesic lengths of the boundaries encoded in
the conjugacy classes of U , V and W .

To compute the combinatorial torsion we can pick the simplest triangulation of the
surface which is

W

U V

P

Y

(3.23)

Let us discuss the situation with an arbitrary gauge group G. Assume we divide the space
of flat connections on Y only by gauge transformations that are trivial at P . Then the
moduli space becomes simply R̂ = G×G, parametrized by say U and V . The definition of
the torsion requires a choice of left- and right-invariant measure volG on the G manifold.
The formal definition of the combinatorial torsion gives the most naive answer one could
have written down

τ̂ = vol(U) · vol(V ), (3.24)

and
τ = vol(U) · vol(V )

vol(R) . (3.25)

The reason is elementary. Considering τ̂ we effectively remove the point P from consider-
ation. The contribution to the torsion from the vector space associated to the 2-cell can
be shown to cancel with the one coming from any one of the three 1-cell which we take to
be W 4. The remainder is just the natural measure on U and V .

At this point the calculation becomes straightforward; one needs to find a convenient
parametrization of the moduli space and compute these group measures. We can use the

4To write it more precisely the torsion is τ̂ = α0(s1, s2, s3)/α1(∂s1, ∂s2, ∂s3, u1, u2, u3, v1, v2, v3), where
{u} is a basis for vector space at U and {v} a basis for vector space at V . One can show the contribution
from s1, s2, s3 cancel with ∂s1, ∂s2, ∂s3 leaving only τ̂ = α−1

1 (u1, u2, u3)α−1
1 (v1, v2, v3) = vol(U) · vol(V ).
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freedom under conjugation to write U = RU0R
−1 and V = RV0R

−1 with

U0 = δ1

(
eb1/2 κ

0 e−b1/2

)
, V0 = δ2

(
eb2/2 0

1 e−b2/2

)
. (3.26)

(δ = ±1 which we can discard now but will be important later when we include spin
structures.) This choice depends on three parameters: b1 and b2 which can obviously be
interpreted as geodesics lengths, and κ. The latter parameter should be related to b3,
the geodesic length of the boundary with holonomy W . To determine the relation write
W = RW0R

−1 and

W0 = V −1
0 U−1

0 = δ1δ2

(
e−(b1−b2)/2 −κeb2/2

−e−b1/2 e(b1−b2)/2 + κ

)
, (3.27)

Compare the trace of W with that of a diagonal matrix,

TrW0 = δ1δ2
(
κ+ 2 cosh b1 − b2

2
)

= δ3 2 cosh b3
2 , (3.28)

combined with the fact that a spin structure is consistent if δ1δ2δ3 = −1. Again, we can
forget about this here but it will be useful to keep in mind for the generalizations. This
leads to

κ = −2 cosh b3
2 − 2 cosh b1 − b2

2 , (3.29)

which is the relation we needed.

Finally we need to decide on a group measure. We can represent an element in the

algebra sl(2,R) by a 2×2 matrix x =
( xh xe
xf −xh

)
= xe e+xf f+xh h. The measure derived

from the inner product |x|2 = 2Trx2 is just 4dxedxfdxh. On a group element U we can
write this measure as

vol(U) = 4(U−1dU)e(U−1dU)f (U−1dU)h. (3.30)

Now we have all the ingredients we need to evaluate the torsion of the three-holed sphere
which we leave as an exercise.

Torsion of the three-holed sphere

With this parametrization of U and V , and the definition of the measure, show that

τ = 8 sinh b1
2 sinh b2

2 db1 db2 dκ (3.31)

Using the relation between κ and b3 we can rewrite the torsion as:

τ = 8 sinh b1
2 sinh b2

2 sinh b3
2 db1 db2 db3 (3.32)
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Fortunately we find that the final answer for the torsion turns up to be symmetric on the
three boundaries. This is not manifest in our approach since we singled out U and V to
parametrize the moduli space.

The prefactor looks funny. We expect the measure over the three-holed sphere to be
independent of the boundary geodesic lengths. To answer this question we need to consider
how the pair-of-pants are suppossed to be glued to each other.

3.3.3 Gluing and torsion of a circle

What happens when we glue together two manifolds Y1 and Y2 with a common boundary
S12?

In QFT gluing is implemented by multiplying the path integrals over Y1 and Y2 and
summing over physical states propagating along the common boundary S12.

In the approach via the torsion to BF theory, the appropriate gluing procedure is to
multiply the torsions of Y1 and Y2 and divide by the torsion of the circle S12:

τY1 · τY2

τS12
. (3.33)

A detailed explanation of the procedure can be found in section 4 of [46].

Rough idea: We need to divide by the circle torsion to avoid overcounting. Otherwise
gluing two pair-of-pants would lead to unwanted terms involving (db)2. Let us now discuss
the torsion of the circle.

Consider a flat connection on a circle with holonomy U = diag(eb/2, e−b/2). This has
an obvious ‘triangulation’, a base point in the circle, and the circle itself. The general
procedure is slightly subtle and is outlined in section 3.4.3 of [47]. Denote by ∂ the linear
transformation of the Lie algebra given by ∂s = UsU−1 − s. The definition of the torsion
gives

τ = α0(∂t1, ∂t2, v)
α1( t1, t2︸ ︷︷ ︸

off-diagonal matrices

, u︸︷︷︸
diagonal matrix

) = |det′ ∂| α0(v)
α1(u) . (3.34)

The determinant over non-zero-modes leads after a simple calculation5 to

|det′ ∂| = 4 sinh2 b

2 . (3.35)

What about α0(v)/α1(u)? The denominator arises from the tangent space to the moduli
space of flat connections and should be associated to changes in the geodesic length through
U = diag(eb/2, e−b/2). The numerator arises from matrices in SL(2,R) that commute with
U , which naturally appears when gluing through parallel transport across the circle and
we called it diag(eϱ/2, e−ϱ/2). The ratio of measures is then naturally db (dϱ)−1. The final
answer is

τS = 4 sinh2
( b

2
)

db · (dϱ)−1 (3.36)

5The eigenvalues of ∂ are e±b − 1 and 0. The zero-mode, given by matrices that commute with U , is the
generator u.
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This is great, the factor of db will cancel the extra unwanted term in the product of two
three-holed-sphere torsion while the twist parameter dϱ will replace it.

3.4 JT gravity as a matrix integral

Having determine the building blocks of the measure over hyperbolic surfaces relevant for
JT gravity we can complete the calculation and show how the result can be reproduced by
a matrix integral.

3.4.1 Measure of a closed surface

Let us begin with surfaces without boundaries. Any closed oriented surface Σ of genus
g can be assembled by gluing together a set T of 2g − 2 three-holed spheres Yt, t ∈ T .
These three-holed spheres have to be glued along a set C of 3g − 3 circles Sc, c ∈ C. Two
three-holed spheres (or two boundaries of the same three-holed sphere) are glued along
each Sc.

µg =
∏
t∈T

τYt

∏
c∈C

1
τSc

. (3.37)

The result is quite simple. Each circle of length db bounds two three-holed sphere whose
torsion produces a factor (db)2. The torsion of that circle replaces one db by dϱ, leading
a factor of dbdϱ for each circle. Moreover one can easily see that all factors of 2 sinh b/2
nicely cancel between the three-holed spheres and the circles.

The final torsion of a closed surface of genus g and no boundaries n = 0 is given by

µg =
3g−3∏
i=1

dbi dϱi (3.38)

This is precisely the Weil-Petersson volume form you probably learned about last week!
We could have derived this from a symplectic approach but, as we will see, the torsion is
more powerful. (Since gluing is done locally, this should also be the measure gluing the
two trumpets in the cylinder.)

The JT gravity partition function on closed hyperbolic surfaces is then given by

Zg,0 =
∫

Mg,0

3g−3∏
i=1

dbi dϱi = Vg,0, (3.39)

where Vg,n=0 is the corresponds Weil-Petersson volume. The integral is done over Mg,0,
the moduli space of hyperbolic surfaces. This involves fixing the right component of the
moduli space of flat connections, Teichmuller space Tg,0, but also involves modding out
by the mapping class group6; two surfaces with very different values of bi and ϱi might
be non-trivial equivalent under a large diffeomorphism. Fortunately, once we get to this
point, we can use the results from Mirzakhani [48, 49] that you learned from Giacchetto
and Lewanski’s lectures.

6The measure we derived on T naturally descends to a measure on M. The reason is that it was obtained
from a gravity calculation and diffeomorphisms, small or large, is a symmetry of the theory.
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The JT gravity partition function without boundaries is equal to the Weil-Petersson
volumes, which combined with the result of [50] implies that they are computed by a
double-scaled matrix integral! Precisely the spectral curve derive from the JT gravity disk
partition function is the one identified by Eynard and Orantin as required to reproduce
the Weil-Petersson volumes.

3.4.2 Final answer

To complete the calculation we need to incorporate boundaries. We would like to fix
boundary conditions that are naturally in holography leading to the so-called NADS2
boundaries we introduced in the previous lecture. This cannot be done in the language of
the torsion, but can be inferred from previous results.

For example, while Ztrumpet
JT (β, b) is a number, the path integral with torsion boundary

conditions
Z̃trumpet

JT (β, b) db, (3.40)

should be a measure of integration over b. To determine it we can compare the two-
boundary wormhole

Ztrumpet
JT (β1, b) dbdϱ Ztrumpet

JT (β2, b), (3.41)

with the quantity with torsion boundary conditions

Z̃trumpet
JT (β1, b) db 1

τS
Z̃trumpet

JT (β2, b) db. (3.42)

Comparing both quantities we infer that the trumpet path integral with torsion boundary
conditions is given by

Z̃trumpet
JT (b) = Ztrumpet

JT · 2 sinh b2 . (3.43)

We are ready to write the final answer for the JT gravity path integral with NAdS
boundaries. First of all, the argument for the case without boundaries still implies that
the integration over all internal geodesics is done with a measure ∏i dbi dϱi. What about
geodesic connected to trumpets? Now we have to worry about geodesics connected to
trumpets. The torsion of the three-holed sphere, together with the trumpet and circle
torsions, will include term

∏
i∈Cint

dbi dϱi ·
∏

e∈Cext

2 sinh be2 dbe︸ ︷︷ ︸
Leftover from torsion of three-holed sphere

1
τSe

Ztrumpet
JT · 2 sinh be2 dbe︸ ︷︷ ︸

Trumpet with torsion bdy

(3.44)

where Cint is the set of internal geodesics while Cext is the set of geodesics connected
to external boundaries. The JT gravity partition function is the integral of the moduli
space of hyperbolic surfaces using this measure. To relate it to the quantity computed by
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Mirzakhani, we can write the final answer as7

Zg,n(β1, . . . , βn) =
∏

e∈Cext

∫ ∞

0
be dbeZtrumpet

JT (βe, be)
∫

M
g,⃗b

∏
i

dbi dϱi︸ ︷︷ ︸
Weil-Petersson volume Vg,n(b1, . . . , bn)

.

(3.45)
The internal Weil-Petersson volume does not care about the twist parameter used for the
external gluing and is therefore independent of it. This allows us to perform the integral
over ϱe rather trivially and obtain factors of be.

The answer in its final form becomes, after writing explicitly the trumpet path integral,

Zg,n(β1, . . . , βn) =
(

n∏
e=1

∫ ∞

0
bedbe

e−b2/(4β)
√

4πβ

)
Vg,n(b1, . . . , bn). (3.46)

Now all the ingredients are explicit and known. The Eynard-Orantin result now implies
that

Zg,n =
〈
Tr e−β1H . . .Tr e−βnH

〉conn.

g,n
(3.47)

JT gravity as a matrix integral

Complete the proof that Zg,n computed via JT gravity is the same as the matrix
integral with an insertion of Tr e−βH and the Schwarzian spectral curve. To do this
first relate Z(β) to the resolvent R(E) via

R(E) = −
∫ ∞

0
dβ eβE Z(β). (3.48)

Then apply this result to the JT gravity answer, and show the result is the same
as the Laplace transform relating Rg,n(x1, . . . , xn) ↔ Vg,n(b1, . . . , bn) discovered by
Eynard and Orantin.

4 Lecture 3: Generalizations

4.1 Dilaton-gravity as a matrix integral

Matrix integrals on a given symmetry class are parametrized by one function, the matrix
potential, or equivalently the spectral curve. Two-dimensional dilaton-gravity theories are
also parameterized by a function, the dilaton potential. Could the two theories be related
beyond the specific example of JT gravity? If so, what is the relation between the spectral
curve and the dilaton potential?

Under some assumptions on the dilaton potential, both questions were answered pos-
itively by Maxfield and GJT [51] and independently by Witten [52].

7We denote by Mg,⃗b the moduli space with geodesic boundaries to distinguish from Mg,n, the moduli
space with n punctures.
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The 2d dilaton-gravity action in terms of the dilaton potential takes the form

I = −S0
4π

∫
M

√
gR− 1

2

∫
M

√
g(ΦR+ U(Φ)) + Ibdy. (4.1)

It is convenient to consider dilaton potentials of the following form

U(Φ) = 2Φ +
∑
I

λI e
−(2π−αI)Φ. (4.2)

What’s special about this choice? Consider the theory with a single exponential for sim-
plicity. Since we already solved the theory with λ = 0 it is reasonable to explore how a
Taylor expansion in λ would look like. To each order in λ the result would look like the
JT gravity partition function with an insertion of

λk

k!
√
g

∫
[dg dΦ]

( k∏
j=1

∫
M

d2xj
√
g e−(2π−α)Φ(xj)

)
e−IJT . (4.3)

Recall that the JT gravity action is linear in Φ which acts as a Lagrange multiplier setting
R = −2. Imagine we can commute the two integrals, performing first the JT gravity
path integral with an insertion of ∏j e

−(2π−α)Φ(xj) with fixed positions. The effect of
the exponential insertions become very simple, as observed earlier in [53], replacing the
constant negative curvature condition by

R+ 2 = 2
∑
j

(2π − α) δ(xj). (4.4)

Notice that in the end we are required to integrate over the positions. The prefactor of 1/k!
just guarantees that defects are treated as indistinguishable. This means the path integral
localizes into hyperbolic metrics with conical singularities. In this notation α denotes the
opening angle of the defect so that the singularity vanishes when its α = 2π. The overall
factor of λk means that each defect insertion comes with a weight λ while the prefactor
1/k! imposes the fact that the defects are indistinguishable.

After this observation the procedure is clear. We should first determine the JT gravity
path integral in the presence of a fixed number k of defects. Next we should sum over all
possible values of k. It is surprising that the second step can be performed in closed form
for the disk allowing us to extract the deformed spectral curve. Moreover, we will also
show the result is still dual to a matrix integral with that density of states.

We can write the path integral of dilaton gravity as

Z(β1, . . . , βn) =
∞∑
g=0

eS0χZg,n(β1, . . . , βn) (4.5)

with
Zg,n(β1, . . . , βn) =

∞∑
k=0

λk

k! Zg,n,k(β1, . . . , βn;α1, . . . , αk). (4.6)
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In this case we consider a single defect species so all α’s are the same but this can be
generalized in a straightforward fashion. This can be represented in the figure, taken from
[51],

Now we need to evaluate Zg,n,k. Let us begin with the simplest case of the disk with a
defect. In this case the theory reduces to the Schwarzian mode which now lives in the space

Diff(S1)/U(1). (4.7)

We can apply the Duistermaat-Heckman theorem again. We obtain

Z0,1,1(β) = 1√
4πβ

e
α2
4β . (4.8)

Notice that this is same as the trumpet partition function under the replacement

b → iα. (4.9)

Disk with defect

Without using the Schwarzian theory, find the classical solution of JT gravity on a
hyperbolic disk with a defect and evaluate its on-shell action. Show it is given by
α2/(4β).

This is not a coincidence. We can compare the geodesic hole to the defect using the
BF formulation. The holonomy of a hole of length b and a conical singularity of opening
α are

Ub = δ exp
(
b/2 0
0 −b/2

)
, Uα = δ exp

(
0 α/2

−α/2 0

)
(4.10)

These two holonomies are conjugate, preserving the spin structure δ, if we identify b = iα.
This is the simplest fact indicating that one might be able to obtain results for defects by
analytic continuation on geodesic lengths of holes.

The relation between holes and defect continue to hold in more complicated surfaces
if and only if all opening angles satisfy 0 ≤ α ≤ π. In fact, it was proven by Tan Wong
and Zhang [54], and further developed by Do and Norbury [55], that the Weil-Petersson
volumes of moduli spaces of hyperbolic surfaces with n holes of length b⃗ and k defects α⃗
in this range are given by

Vg,n,k (⃗b; α⃗) = Vg,n+k(b1, . . . , bn, iα1, . . . , iαk). (4.11)
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When 0 ≤ α ≤ π all boundaries are homologous to geodesics without encountering any
defect. This directly implies that the partition function can be obtained by gluing

Zg,n,k(β1, . . . , βn) =
(

n∏
e=1

∫ ∞

0
be dbe Ztr

JT(βe, be)
)
Vg,n,k (⃗b; α⃗) (4.12)

We have not included the factor of 1/k!. The reason is that the volumes are computed

naturally for distinguishable defects.

The disk with defects: The behavior near the edge does not take the form of a matrix
integral. The correction to the density of states from one defect gives

ρk=1(E) = λeS0

2π
cosh(α

√
E)√

E
∼ λeS0

√
E
. (4.13)

Does this mean the duality fails? No, actually contributions with more defects diverge
faster, signaling that a resummation is necessary to decide what the actual behavior at the
edge is.

We would like to evaluate the low temperature limit of the partition function. The
Weil-Petersson volumes have the limit, when one of the boundaries is large,

V0,k+1(b0, b⃗) = 1
(k − 2)!

b2k−4
0
2k−2 + . . . , b0 ≫ 1 (4.14)

Volumes for large boundaries

Derive the generalization of this formula for arbitrary genus.

This implies that
Z0,1,k(β) = 1√

2π
(2β)k−3/2 + . . . , (4.15)

which after summing of the defect leads to

Z(β) = eS0
∞∑
k=0

λk

k! Z0,1,k(β) = 1
4
√
πβ3/2 e

2λβ + . . . . (4.16)

In terms of the density of states

ρ(E) ∼ eS0 1
2π

√
2(E − E0), E0 = −2λ+O(λ2). (4.17)

Therefore the singularity at E = 0 is simply signaling the fact that the deformation includes
a shift in the threshold energy. Another result of [51] was to point out the relevance of this
fact to the question of whether pure 3d gravity exists.
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Exact density of states: Using the following exact formula for Weil-Petersson volumes
derived in [56]8

V0,n(b1, . . . , bn) = (−1)n−1

2
dn−3

dxn−3

[
u′(x)

n∏
i=1

J0

(
bi

√
u(x)

)] ∣∣∣
x→0

,

√
u

2π I1(2π
√
u) = x

(4.18)
we can derive the exact density of states by summing over an arbitrary number of defects
on the disk. The derivation is quite involved and can be found in section 3 of [51]. The
final result is

ρ(E) = eS0

2π

∫ E

E0

du√
E − u

dF (u)
du , (4.19)

where
F (u) =

√
u

2π I1(2π
√
u) +

∑
I

λI I0(αI
√
u). (4.20)

The threshold energy is the largest root of F (E0) = 0 and one can show the edge is a
square root, as universally expected for a random matrix spectrum. This function F (u)
is precisely the tree-level string equation that appeared on C. Johnson’s lectures. Even
though the expression for ρ(E) is quite complicated, its nice that the defect species are
additive in the string equation. The shape of the density of states looks like (figure taken
from [51])

As a side comment, it is interesting that the density of states can become negative. This
was further studied by Rosso and Johnson in [58]. In [59] we show that in some simpler
settings, namely N = 1 supergravity, the matrix model indicates a transition to a two-cut
phase. Open question: What is the gravity interpretation of such phase transitions?

Proof of the duality To prove the duality at all orders in the genus expansion, it is
useful to write the partition function in a slightly different way. First we remind that the
resolvent and Weil-Petersson volumes are related by

Wg,n(z⃗) =
(

n∏
e=1

∫ ∞

0
be dbee−beze

)
Vg,n(⃗b). (4.21)

8The derivation can be done in the language of the orthogonal polynomial method that C. Johnson
described in his lecture. The equation for u(x) is the tree-level string equation. The formula for Vg,n arises
from a general formula for genus-zero correlators for any double-scaled matrix integral derived in [57].
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whereWg,n(z⃗) = (−2z1) . . . (−2zn)Rg,n(−z2
1 , . . . ,−z2

n). We can write the deformedWg,n(z⃗;λ)
and evaluate the derivative with respect to λ at λ = 0. These are the path integrals with
defects precisely. Some simple manipulations lead to

dk
dλkWg,n(z⃗)

∣∣∣
λ=0

=
(∫ ∞

0

k∏
e=1

be dbee−beze

)
Vg,n+k(b1, . . . , bn, iα, . . . , iα︸ ︷︷ ︸

k terms

) (4.22)

We can combine this with an inverse Laplace transform

Vg,n(⃗b) =
(

n∏
e=1

∫
C

dz
2πi

ebeze

be

)
Wg,n(z⃗). (4.23)

This leads to

dk
dλkWg,n(z⃗)

∣∣∣
λ=0

=
(

k∏
e=1

∫
C

dz̃e
2πi

sin(αz̃e)
α

)
Wg,n+k(z⃗, z̃1, . . . , z̃k), (4.24)

where we write eiαz̃e/iα in terms of the sine for convenience; it guarantees the formula is
valid for (g, n) = (0, 1) as well. We can take as integration contour a curve that encircles
the cut. Finally this is equivalent to the relation at finite λ

dWg,n(z⃗;λ)
dλ =

∮
C

dz̃
2πi f(z̃)Wg,n+k(z⃗, z̃;λ), f(z) = sin(αz)

α
(4.25)

This is precisely of the form relevant for the “deformation theorem” of Eynard and Orantin
[50], which states that deformations that take this form satisfy the topological recursion9.

Blunt Defects When the defects are blunt the previous results are not valid. This is
the range π < α ≤ 2π. The problem is essentially to take care of situations where defects
can merge such as

The way the Deligne-Mumford compactification works, the merger of blunt defects is not
correctly treated.

We might think the result can be simply analytically continued to this range but this
is wrong. For example the Weil-Petersson volume on the sphere with four defects would
be

V0,0,4(α⃗) =? 4π2 − α2
1 − α2

2 − α2
3 − α2

4
2 , (4.26)

9The theorem is even more general and allows the integrand, which in our case is sin(αz)/z to also
depend on λ. We didn’t find an application of this generalization to gravity.
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However, even when obeying the Gauss-Bonnet constraint

1
2

∫
R+

∑
j

(2π − αj) = 2πχ, (4.27)

which implies that ∑j(2π − αj) ≥ 4π, one can obtain negative answer, for example for
α1 = α2 = 0 and α3 = α4 >

√
2π (∑j(2π − αj) = 8π − 2

√
2π = 2π(4 −

√
2)). Another

evidence is that when we put α = 2π, turning the defect into nothing, we do not recover
the answer with one defect less!

What should the answer be instead? An answer was proposed in [60] based on con-
siderations regarding the minimal string. The answer is given by a matrix integral with
tree-level string equation

F (u) =
∫

C

dy
2πi e

2πy
(
y −

√
y2 − u− 2W (y)

)
, W =

∑
i

λie
−(2π−αi)y. (4.28)

You can translate this to a density of states as in C. Johnson’s lectures. In particular when
0 ≤ α ≤ π it reduces to the string equation at tree-level written above. We verified some
non-trivial limit of this formula in [60]. For example, when α = 2π we recover the JT
gravity curve.

In [61] we showed that the Weil-Petersson measure on the moduli space with boundaries
and defects is given by

ω

2π2 = κ1 +
∑
i

b2
i

4π2ψi −
∑
j

α2
j

4π2ψi +
∑

I⊂{1,...,m},αI≥0

α2
I

4π2 δ0,I (4.29)

where the last sum is over subsets of the defects and

αI = 2π −
∑
i∈I

(2π − αi). (4.30)

Finally, δg,I ∈ H2(Mg,n) are the Poincare duals of boundary divisors, which in physics
language can be interpreted as a contact term when vertex operators collide. The boundary
divisor separates a surface of genus g with the punctures inside the set I.

Open question: Give a proof of this duality!

4.2 Fermionic JT gravity

Fermionic JT gravity can be defined, similarly to bosonic JT gravity, in terms of a BF

theory with group SL(2,R). The sign that we dropped in the bosonic theory encodes the
information about the surfaces spin structure.

Define the mod 2 index theory, considering closed surfaces first. Then we can study
the Dirac operator /D. Zero-modes come in pairs of opposite chirality. The number of say
positive chirality zero-modes mod 2 is a topological invariant we call ζ. Then we can define
a TQFT by (−1)ζ . A nice discussion can be found in section 3 of [62]. If one wants to
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define it on a surface with a boundary one runs into an anomaly which precisely reproduces
something we will see below10.

Without mod 2 index: The fermionic JT gravity partition function therefore∑
spin

1 = 22g+n−2(1 + (−1)nR) (4.31)

This is consistent with the fact that an orientable two-manifold with a spin structure has
an even number of Ramond boundaries11.

This can be reproduced by the following matrix integral. Consider a Hilbert space
H = Hb ⊕ Hf composed of bosonic and fermionic subspaces of dimensions Lb and Lf ,
respectively. Assume for simplicity that Lb = Lf = L/2 where L = dimH. Work in a basis
where (−1)F is represented as

(−1)F =
(
I 0
0 −I

)
. (4.32)

Consider a Hamiltonian of the form

H =
(
Hb 0
0 Hf

)
, (4.33)

where Hb and Hf are statistically independent matrices drawn from the GUE ensemble.
Moreover, a boundary with NS structure corresponds to an insertion of

TrH e−βH = TrHb
e−βHb + TrHf

e−βHf , (4.34)

while a boundary with R structure corresponds to an insertion of

TrH (−1)F e−βH = TrHb
e−βHb − TrHf

e−βHf . (4.35)

Consider Hb and Hf to be statistically independent. To make this as clear as possible I’ll
write all steps. The correlators in the large eS0 limit are given by〈

nNS∏
i=1

ZNS(βi)
nR∏
i=1

ZR(βi)
〉conn.

g,n

=
〈

n∏
i=1

TrHb
e−βHb

〉
+ (−1)nR

〈
n∏
i=1

TrHf
e−βHf

〉
,

= (1 + (−1)nR) · (GUE correlator, eS0 → eS0/2),
= 22g+n−2(1 + (−1)nR)︸ ︷︷ ︸

Sum over spin structures

× (GUE correlator, eS0)︸ ︷︷ ︸
Reproduced by JT gravity amplitudes

(4.36)
10A convenient way to compute the mod 2 index on surfaces with boundaries is by comparing different

spin structures that are the same on ∂Σ. This is the relevant question anyways in the application to
holography. The reason is that the mod 2 index is local so can remove the boundaries (glue them for
example) and then evaluate it through Dirac operator zero-modes.

11In case you never thought about this, a simple way to see this is the following. We already noticed
that a three-holed sphere satisfies δ1δ2δ3 = −1. The product of δ1δ2δ3 over all three-holed spheres gives∏

Y
δY1δY2δY3 = (−1)χ = (−1)n. On the other hand since all internal boundaries are counted twice,

since they are shared by two three-holed spheres, then
∏

Y
δY1δY2δY3 = (−1)nNS . Therefore (−1)nNS =

(−1)n−nR = (−1)n implying that (−1)nR = 1.
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In the first line we used the statistical independence combined with the fact that (−1)F

will insert a minus sign for each Ramond boundary. In the second line we used the fact
that both H1 and H2 have the same dimension and therefore both contribute the same as
the GUE ensemble with a dimension given by half the total Hilbert space dimension. This
rescaling produces a prefactor times the GUE correlator with conventional normalization
of eS0 . The prefactor is precisely ∑spin 1 while the GUE correlator is given by the bosonic
JT gravity path integral, completing the duality.

With mod 2 index: Next, consider the theory that does include the mod 2 anomaly in
the bulk. The result is now multiplied by∑

spin
(−1)ζ = 2g+n−1δnR,0. (4.37)

Notice that the power that appears here is not the Euler characteristic and therefore cannot
be aboserved fully in a shift of S0. (This is only true with boundaries! In closed surfaces
n = 0 and we can shift eS0 making the theory trivial.)

To reproduce this answer we are forced to impose

Tr (−1)Fe−βH = 0, (4.38)

for each member of the ensemble (as opposed to on average, as in the previous case).
Assume also that an insertion of a NS boundary corresponds to

√
2Tre−βH (4.39)

Then
(
√

2)n(
√

2)2g+n−2︸ ︷︷ ︸
2g+n−1=

∑
spin(−1)ζ

×(GUE correlator, eS0) (4.40)

One can interpret this rules as arising from an anomaly in (−1)F. This arises for
example in any theory with an odd number of Majorana fermions. The Hilbert space is a
representation of the Clifford algebra and there is no chirality in odd dimensions. From the
path integral perspective there is an odd number of fermion zero-modes which cannot be
soaked by interactions which would involve an even number of fermions. The factor of

√
2

relating path integral to traces can be inferred by considering N free fermions (the path
integral is 2N/2 while the dimension of the Hilbert space is 2(N−1)/2 if N is odd.)

4.3 “Unorientable” JT gravity

In the BF description, unorientable JT gravity can be obtained by replacing the gauge
group PSL(2,R) by its double cover PGL(2,R). This is the group of 2 × 2 invertible real
matrices modulo multiplication by a nonzero real scalar. This group includes the element

UR = λ

(
1 0
0 −1

)
, λ ∈ R, (4.41)
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which PSL(2,R) would not. Other than this the groups are the same; multiplication by
a nonzero real scalar can be used to set the determinant of any matrix to be either 1,
meaning its in PSL(2,R), or −1, meaning its the product of a matrix in PSL(2,R) times
UR. (This double cover does not care about spin structure since I and −I are still identified
in PGL(2,R).)

What is the geometric interpretation of UR? Whenever a holonomy includes UR the
meaning is that there has been an orientation reversal. For example, in the case of the cylin-
der the “holonomy” from one boundary relative to the other could be Uϱ = diag(eϱ/2, e−ϱ/2)
(standard choice) or UR·Uϱ = diag(eϱ/2,−e−ϱ/2) which involves an orientation reversal prior
to gluing. This is referred to in [47] as the twisted trumpet.

Describe first orientable surfaces. Since we are gauging orientation reversal, the orien-
tation of a given boundary is not meaningful. But once we choose an orientation in one
boundary, the relative orientation of the other n − 1 boundaries will be meaningful since
they can be measure by “holonomies” obtained from parallel transport between boundaries.
This generates 2n−1 topologically distinct contributions. The partition function in any of
them is exactly the same as the one we computed in oriented (bosonic) JT gravity. This
therefore produces a simple factor

(Path integral over oriented surface) = 2n−1 · ZJT
g,n. (4.42)

It is easy to check that, for genus zero, the loop equations of the β = 1 and β = 2 resolvants
are related by

Rβ=1
0,n (x1, . . . , xn) = 2n−1Rβ=2

0,n (x1, . . . , xn) (4.43)

Loop equations for Dyson ensembles

Show this. To remind you, the loop equations of the Dyson ensembles are given by
2y(x)Rg(x, I) + Fg(x, I) ∼ 0 where

Fg(x, I) =
(
1 − 2

β

)
∂xRg− 1

2
(x, I) +Rg−1(x, x, I) +

∑
stable

Rh(x, J)Rg−h(x, I/J)

+2
n∑
k=1

(
R0(x, xk) + 1

β

1
(x− xk)2

)
Rg(x, I/xk). (4.44)

where R(x) = ∑
j(x − λj)−1. In the case of GSE it does not include the two-fold

degeneracy.

Orientable surfaces are made out of three-holed spheres. To build a hyperbolic metric
on an arbitrary possibly unorientable Y , we need another kind of building block. This is
obtained from a three-holed sphere Y0 by replacing one or more of its boundary circles with
crosscaps. If χ is even we can make unorientable surfaces only out of orientation-reversal
when gluing.
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We can construct another non-trivial theory if we insert a sign (−1)nc . This relates
the GOE ensemble with the GSE. To see this, notice that if we write

R̃g(I;L) = 2|I|Rg(I;L/2), (4.45)

then the loop equation for the GSE is identical to the GOE one with the sign of the crosscap
reversed. This is the actual observable that Tr(x − H)−1 would compute which includes
the degeneracy. The rescaling L → L/2 just guarantees the disk amplitudes are the same.

GOE vs GSE

Use the loop equations to show this.

How to compute the path integral on unorientable surfaces? At this point we are forced
to use the torsion; JT gravity is not tree-level exact anymore on unorientable surfaces!

Describe cross-cap torsion calculation. We can represent the crosscap by a cylinder
with two circle boundaries S and S′. On S′ we identify antipodal points making it an
internal circle now. If we denote by U = diag(eb/2, e−b/2) the holonomy around S then
the holonomy around S′, which we call V , should satisfy U = V 2. Since going around
S′ involves an orientation reversal we take V = UR · diag(eb/4, e−b/4) = diag(eb/4,−e−b/4).
By an argument similar to the one that applied to the circle, the torsion of the crosscap
involves the determinant of the operator s → V sV −1 − s, with eigenvalues −1 − e±b/2 and
a careful treatment of the zero-modes. The result is

τC = 2 cosh2 b

4 · db · (dϱ)−1. (4.46)

We can now derive a measure for integration over the moduli space of hyperbolic
surfaces which are possibly unorientable. They can be built out of three-holed spheres
with orientation reversing gluing (this would be the trivial case) but they can also involve
three-holed-sphere where either one or two boundaries are replaced by crosscaps. Using
the gluing rules described in the previous lecture one automatically gets

τY =
3g−3∏
i=1

dbi dϱi
n∏

α=1

1
2 coth bα4 dbα. (4.47)

Here bα are the lengths of the crosscap geodesics. The twist cancels in the gluing, as
it should. Precisely this measure was previously “bootstrapped” by Norbury, with the
assumption that it takes a factorized form and that its independent of choice of coordinates.
This is consistent with the gravity calculation which should be invariant under change of
coordinates (the factorized form is not obvious although very reasonable given the gluing
property of the torsion).

We can perform another small check; compute the crosscap with one boundary. Recall-
ing the trumpet with torsion boundary conditions, and the gluing relations for the torsion,
leads to

Z 1
2 ,1

(β) =
∫ ∞

0
db Ztrumpet

JT (β, b) 1
2 coth

( b
4
)
. (4.48)
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Even though this is divergent, the integral can be succesfully compared to the prediction
from loop equations. This was actually shown to all orders recently by Stanford [63].

4.4 “Unorientable” fermionic JT gravity

We now want to sum over both unorientable surfaces, and over spin structures. In the BF
description we included orientable surfaces by replacing PSL(2,R) by PGL(2,R), and we
included a spin structure by replacing PSL(2,R) by SL(2,R). To do both things we need
to take the appropriate double cover of SL(2,R). There are two such groups which we can
call pin+ and pin−:

For pin+ one wants the group of real matrices with determinant ±1 meaning one
again includes diag(1,−1). This means that R2 = 1. The CPT theorem implies that any
field theory on a Lorentzian spacetime has a non-unitary symmetry RT which satisfies
RT2 = (−1)F. Therefore the fact that R2 = 1 implies that on the boundary T2 = (−1)F,
up to possible anomalies.

For pin− we work with the group of matrices of determinant 1 that are either real or
imaginary, implying one includes the element R = diag(i,−i). In this case R2 = −1 which
acts trivially on bosonic fields and produces a negative sign on fermions. This implies
that it acts as R2 = (−1)F. The CPT theorem now implies that time reversal acts on the
boundary as T2 = 1 up to possible anomalies.

The procedure should be now clear. For a given orientation and spin structure we can
perform the JT gravity path integral obtaining the result above. The non-trivial ingredient
now is the possibility to incorporate a sum over pin± structures together with possible
TQFT weighting them in different ways. We conclude by summarizing the possibilities:

Sum over pin− structures: The topological invariant on a surfaces with pin− structure
that generalizes the mod 2 TQFT is given by

exp(−iπη/2), (4.49)

where η is the Atiyah-Patodi-Singer eta invariant of the self-adjoint operator i /D. For any
manifold this phase is the eighth-root of unity giving essentially 8 possible theories where

ZJT ·
∑
pin−

exp(−iπNη/2), (4.50)

and N is defined mod 8. On orientable surfaces the eta invariant reduces to the mod 2
invariant and we recover the two theories analyzed earlier. Sums over pin structures can be
used combining this fact with the locality of the eta-invariant, and the result for a crosscap.

Let us work out one example to illustrate how it works. Take the TQFT with N = 0, 4 mod
8. One can show ∑

pin−

exp(−iπ0η/2) = 22g+n−2(1 + (−1)nR), (4.51)

∑
pin−

exp(−iπ4η/2) = 22g+n−2(−1)nc(1 + (−1)nR). (4.52)
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Multiplying this by the unoriented JT gravity partition function, which we already deter-
mined is dual to the GOE/GSE ensemble, leads to the two matrix ensembles

N = 0 mod 8 ⇒ H =
(

GOE1 0
0 GOE2

)
, (4.53)

N = 4 mod 8 ⇒ H =
(

GSE1 0
0 GSE2

)
. (4.54)

Therefore the case N = 0 mod 8 corresponds to a theory where quantum mechanically
there is a ZT

2 × ZF
2 group generated by T2 = 1 and (−1)F. When N = 4 mod 8 the only

difference is that now T2 = −1. Similarly, all choices of N can be mapped to possible
anomalies in the classical ZT

2 × ZF
2 symmetry.

This case is important because when we consider its generalization to N = 1 super-
gravity it will generate the rest of the Altland-Zirnbauer ensembles of random matrices
[47].

Sum over pin+ structures: In this case we need to analyze what invariants we can
define on unorientable pin+ structures. This is actually a mod 2 index of the Dirac operator
(non-chiral since we include unorientable surfaces). This is sometimes denoted by

(−1)ζ̃ . (4.55)

Therefore there are two theories corresponding to pin plus structures.

When we sum over pin structures without the mod 2 TQFT, this corresponds to a non-
anomalous boundary theory with both T and (−1)F but

T2 = (−1)F. (4.56)

making the group ZT
4 where the super-index indicates it involves time reversal. This means

that the Hilbert space decomposed into two sectors. The bosonic sector leads to the GOE
ensemble and the fermionic sector to the GSE ensemble. This can be verified using the
relation ∑

pin+

1 = 22g+n−2(1 + (−1)nR+nc). (4.57)

In the presence of the mod 2 TQFT we expect an anomaly. There is only one possibility
which can be written as

T2 = i(−1)F. (4.58)

The anomaly can be moved around (for example can be put in the fermion parity which
would then square to minus one) but cannot be removed. Importantly the antiunitarity of
T implies

T(−1)F = −(−1)FT. (4.59)
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Therefore time-reversal exchanges the bosonic and fermionic blocks and does nothing oth-
erwise. This is consistent with∑

pin+

(−1)ζ̃ = 22g+n−1 δnR,0 δnc,0. (4.60)

We see the contribution with crosscaps vanish identically after summing over pin structures,
confirming that the GUE ensemble is the relevant one here.

4.5 JT gravity with end-of-the-world branes

An interesting generalization, with important implications to questions such as reproducing
the Page curve from gravity, involves the addition of end-of-the-world branes to JT gravity.
This was derived by Penington, Shenker, Stanford and Yang [64].

Another generalization I won’t have time to cover is JT gravity with propagating
matter.

5 Lecture 4: Supergravity

5.1 N = 1 JT gravity

5.1.1 Basics

As should be clear by now, the most efficient way to describe a generalization of JT gravity
with one supercharge is through the BF description. We replace the group SL(2,R) by its
smallest supersymmetric generalization

SL(2,R) → OSp′(1|2) = OSp(1|2)/Z2. (5.1)

This is the group of linear transformations of two bosonic variables u, v and one fermionic
θ that preserves the symplectic form

ω = dudv + 1
2dθ2. (5.2)

We are modding out by the transformation u, v|θ → −u,−v| − θ which commutes with
everything. The bosonic generators can be written as

e =

 0 1 0
0 0 0
0 0 0

 , f =

 0 0 0
1 0 0
0 0 0

 , h =

 1 0 0
0 −1 0
0 0 0

 , (5.3)

and the fermionic ones as

q1 =

 0 0 1
0 0 0
0 −1 0

 , q2 =

 0 0 0
0 0 1
1 0 0

 . (5.4)

– 37 –



Supergravity

Write explicitly the action of N = 1 JT supergravity using the BF formulation.
Remember to replace trace by the supertrace, which for a given supermatrix M =(
A B

C D

)
is given by STrM = TrA− TrD.

The JT gravity path integral will naturally localize into flat connections, modulo gauge
transformations. This space again has multiple components and the connection with gravity
forces us to restrict to one where all holonomies are hyperbolic (after reducing modulo odd
variables). We can refer to this as a N = 1 generalization of Teichmuller space.

The geometric information is encoded in holonomies in the following way

U = ±

 e
b/2 0 0
0 e−b/2 0
0 0 δ

 , (5.5)

where b is the geodesic length and δ = ±1 denote the spin structure. The overall sign is
not meaningful in OSp′(1|2).

The first step, as we did for JT gravity, is to study the disk and the cylinder. The path
integral over the disk reduces to a straightforward generalization of the Schwarzian action
with one supercharge, defined in [65]. The boundary mode is parameterized by super-
reparametrizations of the N = 1 super-line (τ, θ) that includes both a bosonic component
τ → f(τ) as well as fermionic θ → θ + η(τ). The action is

I = −Φr

∫
dτ {tan πf

β
, τ} + η η′′′ + 3η′η′′ − {tan πf

β
, τ}η η′. (5.6)

The zero-mode of this action are the generators of the isometries of the N = 1 hyperbolic
disk. This isometry group is precisely OSp(1|2) of dimension 3|2. The fermion zero-modes
have a behavior η ∼ e

±i 1
2

2πτ
β .

The path integral localizes by a supersymmetric analog of the Duistermaat-Heckman
formula [26] and the one-loop determinant is again given by the “rotation angles” of a U(1)
symmetry. The one-loop determinant for bosons and fermions are

Zone−loop =
∏
n≥2

1
n/(2β)︸ ︷︷ ︸

Schwarzian mode

·
∏

m≥3/2
m/(2β)

︸ ︷︷ ︸
Fermion

=
√

2
πβ

. (5.7)

To derive this result we can use that in zeta-function regularization ∏m≥1/2m/(2β) =
√

2.
This is the partition function of a single Majorana fermion. The final answer for the disk
partition function is

Zdisk =
√

2
πβ

e
π2
β . (5.8)
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The different factor of β can be traced back to the fact that the N = 1 has two new
fermionic isometries, which induces a new factor of β in the numerator. The counting is
straightforward.

The spectral curve derived from this formula is

ρ(E) =
√

2 cosh(2π
√
E)

π
√
E

, y(x) = −
√

2 cos(2π
√

−x)√
−x

. (5.9)

A similar calculation on the trumpet gives

Ztrumpet
SJT (β, b) = 1√

2πβ
e

− b2
4β . (5.10)

This has the same power of β since the trumpet has no fermionic isometries12. It is
multiplied by

√
2 compared to the bosonic answer, the partition function of a Majorana

fermion. The cylinder partition function is

Z0,2(β1, β2) = 2
∫
bdb Ztrumpet

SJT (β1, b)Ztrumpet
SJT (β2, b). (5.11)

The factor of 2 arises from the two spin structures “orthogonal” to the gluing geodesic.

5.1.2 Measure over moduli space

We can compute the measure over moduli space using the torsion. Again, we have either
a symplectic or torsion approach. Both are applicable but the symplectic approach is not
particularly simpler and does not apply on unorientable surfaces; for this reason we will
use the torsion again.

To compute the combinatorial torsion we need to determine a supergroup measure. We
did that earlier by starting with a nondegenerate quadratic form, from which we derived a
measure involving a determinant. The generalization of this to supergroups is the following.
First, the quadratic form should involve a supertrace instead of a trace to guarantee it is
invariant. Second, we need a generalization of |detM | for supergroups. This is called the
Berezinian and has a general definition but we only need its expression for a supermatrix

M =
(
A B

C D

)
, when either B or C vanish

BerM = detA · 1
detD. (5.12)

The absolute value is replaced by Ber′M = sgn(detA) BerM .

The torsion associated to bosonic groups is positive, given that it involves positive
measures. This is not the case for supergroups and there is some arbitrariness in assigning
signs. Even more, on unorientable surfaces the path integral can even be complex.

12One can give a simple BF argument for this. The holonomy around the hole is ±diag(eb/2, e−b/2, δ).
There are no fermionic matrices that commute with this holonomy.
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Torsion of a circle Let us begin consider the case of a circle since its simpler and take
its holonomy to be U = ±diag(eb/2, e−b/2, δ). The torsion is the Berezinian of the operator
∂s = UsU−1−s. A simple calculation leads to the bosonic eigenvalues e±b−1 and fermionic
δe±b/2 − 1. The zero-modes contribute db · (dϱ)−1 for the same reason as in the bosonic
theory. The final answer is

τS = −δ(eb/4+δe−b/4)2db·(dϱ)−1 =

4 sinh2( b4) db · (dϱ)−1 NS spin structure,
−4 cosh2( b2) db · (dϱ)−1 R spin structure.

(5.13)

Torsion of a three-holed sphere The description of the moduli space can be made
very similar to the case of bosonic gravity. We have three holes with holonomy U , V , W
constrained by UVW = 1 and defined only modulo overall conjugation. This leaves total
of 3|2 moduli. The three bosonic ones are the usual geodesic lengths while the remaining
2 moduli are fermionic.

Take x ∈ osp(1|2) and consider the quadratic form ||x||2 = 2STrx2 = 4x2
h+ 4xexf + 8x1x2.

The Berezinian of this metric is one, so the natural measure is [dxe dxf dxh|dx1 dx2]. The
normalization of the quadratic form is chosen so that it reduces to the one considered in
the bosonic case, which we show to coincide with the Weil-Petersson form with the usual
normalization. Finally the form on the group manifold in terms of U is the measure on
U−1dU .

We parametrize the holonomies by U = RU0R
−1 and V = RV0R

−1 with

U0 = δ1

 e
b1/2 κ 0
0 e−b1/2 0
0 0 δ1

 · eξq1 , V0 = δ2

 e
−b2/2 0 0

1 eb2/2 0
0 0 δ2

 · eψq2 . (5.14)

We can compute the torsion through τ = vol(U) vol(V )/vol(R). We also need to find an
equation that relates κ with b3. The final answer for the torsion is

τY =
2 sinh b1

2 sinh b2
2 sinh b3

2
(δ1eb1/2 − 1)(δ2eb2/2 − 1)

[db1 db2 db3|dξdψ] (5.15)

Supergravity torsion

Reproduce the torsion of N = 1 supergravity.

Measure over moduli space We now can glue the pieces. Consider a closed surface
first. We take the product of the torsion of all 2g − 2 three-holed spheres t ∈ Y and the
product of the inverse torsion of all circles s ∈ S. Since the torsion of the three-holed sphere
is not manifestly invariant under permutation of boundaries we need to make an arbitrary
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choice of labels which we call (b1, b2, b3) → (at, bt, ct) where t ∈ Y is the three-holed sphere
under consideration. The final answer after combining all terms is

τ = 1
2(−1)wR

∏
s∈S

[dbsdϱs]
∏
t∈Y

1
4δatδbte

−(at+bt)/4(ect/4 − δcte
−ct/4)[dξt dψt]. (5.16)

The prefactor of 1/2 comes from taking into account the Z2 symmetry (−1)F. wR is the
number of interior Ramond boundaries.

A similar formula can be written in the case of surfaces with boundaries in an obvious
way, although the trigonometric factors are not that nice. This formula implies that for
g = 0 the volume vanish since we have a fermionic integral of a measure independent of
fermionic coordinates. This does not happen at higher genus since the mapping class group
impose inequalities that might involve fermionic coordinates.

Finally, besides integrating over lengths and twist we also need to sum over spin struc-
tures. When performing this sum we are free to insert our mod 2 index TQFT (−1)ζ . This
leads to two different N = 1 supergravity theories.

5.1.3 Duality with random matrices

Theory with anomalous (−1)F In this case H = Q2 and Q is a self-adjoint operator
with no further structure since the fermion parity operator is anomalous. Therefore it is
reasonable to expect Q to be taken from the GUE ensemble, with the partition function
being

Zgravity(β) =
√

2 Tr e−βQ2
. (5.17)

The spectral curve of the GUE ensemble for Q is therefore

Zdisk(β) =
√

2
∫ ∞

−∞
dq ρ0(q) e−βq2

, ρ0(q) = cosh(2πq)
π

. (5.18)

This is a new situation; the spectral curve has support on the whole real axis. This is a
double-scaling limit where both ends go to infinity. This is also in the same universality
class as the Gross-Witten-Wadia model13.

Since the model has a spectral curve with support on whole real axis the loop equations
predict all higher genus corrections (other than disk and cylinder) to vanish. The reason
is that for the GUE ensemble the loop equations get contributions solely from poles at the
edges but there are no edges here. This is consistent with the result above if we sum over
spin structures without (−1)ζ , one can show this vanishes.

Theory with (−1)F symmetry In this case the Hilbert space should decompose into
two sectors of fermionic and bosonic states. This implies that the supercharge now has the
following structure

Q =
(

0 Q
Q† 0

)
, H =

(
QQ† 0

0 Q†Q

)
. (5.19)

13This was important to resolve some puzzle when considering deformations of supergravity [59].
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where Q : Hf → Hb and Q† : Hb → Hf is its adjoint. We can use a singular value
decomposition and call λj the singular values of Q. This translate to eigenvalues of both
Q†Q as well as QQ†. This means that for each eigenstate in the fermionic sector there is
an equivalent eigenstate in the bosonic sector. This is also true if λj = 0. The exception is
when dimHb ̸= dimHf where Q is rectangular and there will be states of zero energy that
are protected and appear only in one sector.

This is one of the ten Altland-Zirnbauer ensembles. The measure of integration over
the singular values become∏

i

∫
dλi |λi|α

∏
i<j

|λ2
i − λ2

j |β e
−L
∑

j
V (λ2

j ) (5.20)

where for our specific case of the complex matrix Q, the coefficients are (α,β) = (1, 2).

We can reproduce N = 1 supergravity by choosing a Hilbert space with equal dimen-
sion for bosonic and fermionic states. Then the partition function will be

Tr e−βH = 2
∑
j

e−βλj . (5.21)

Since the loop equations are normally derived in terms of sums over unequal eigenvalues,
we need to multiply the AZ ensemble answers by a factor of 2 # of boundaries.

We can verify this for the cylinder. We should get from gravity four times the bosonic
answer. Indeed each trumpet has an extra factor of

√
2 from the fermion path integral,

while there is an extra 2 from the sum over spin structures of the cylinder making a total
factor of 4.

It can be verified by a Laplace transform that the loop equation of the (α,β) = (1, 2)
AZ ensemble coincide with the topological recursion computing the volumes of moduli
space of N = 1 surfaces. Let us mention some intermediate steps. First of all, the matrix
model loop equations for the (α,β) = (1, 2) ensemble can be written as

bVg(b, B) = −1
2

∫ ∞

0
(b′db′)(b′′db′′)D(b′ + b′′, b)

(
Vg−1(b′, b′′, B) +

∑
stable

Vh1(b′, B1)Vh2(b′′, B2)
)

−
|B|∑
k=1

∫ ∞

0
b′db′ (D(b′ + bk, b) +D(b′ − bk, b))Vg(b′, B/bk). (5.22)

where
D(x, y) =

∫ i∞

−i∞

dz
2πi

e−xz

2zy(−z2) sinh(yz). (5.23)

When we insert the spectral curve of N = 1 JT gravity we obtain precisely

D(x, y) = 1
8π
( 1

cosh x−y
4

− 1
cosh x+y

4

)
. (5.24)

It was shown by Stanford and Witten, and independently by Norbury, that the Weil-
Petersson volumes of N = 1 surfaces follow precisely this recursion relation with this
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kernel. This proves that N = 1 JT gravity including the mod 2 index is dual to the (1, 2)
AZ matrix ensemble.

Recursion

Relate the loop equations with a Mirzakhani-looking recursion for any spectral curve.
In other words, derive the equation (5.23).

If you recall the derivation of Mirzakhani recursion, it involves computing the length
on a boundary circle of a segment where geodesics have certain properties. This singles
out a three-holed sphere with no moduli. In the supergravity case the three-holed sphere
has fermionic moduli and have to be integrated. This causes the changes in the recursion
kernel that matches exactly with the loop equations.

5.1.4 “Unorientable” N = 1 supergravity

In the BF language, in order to define unorientable supergravity we need to select an
automorphism of the group which is orientation reversal. We will work with the basis of
generators we wrote above {e, f, h; q1, q2}. If we conjugate the bosonic generators by the
orientation reversal diag(1,−1) we obtain

e → −e, f → −f, h → h. (5.25)

This preserves the sl(2,R) algebra [h, e] = 2e, [h, f] = −f and [e, f] = h. What about
fermions? We need to guarantee that the action of this transformation on fermions keeps
the algebra unchanged. The relations q2

1 = −e and q2
2 = f imply that the transformation

has to be q1 → ±iq1 and q2 → ±iq2. On the other hand {q1, q2} = h implies the two
signs have to be opposite so if q1 → ηiq1 then q2 → −ηiq2 where η = ±1. The only other
non-trivial commutators to check are [e, q2] = q1 and [f, q1] = q2.

The conclusion of the previous discussion is that applying an orientation reversal twice
leaves the bosonic generators unchanged while it acts on fermions by reversing their sign.
This means that such a transformation satisfies R2 = (−1)F, implying that N = 1 super-
gravity only allows for a sum over pin− structures.

One can provide a holographically dual argument for the restriction to pin− structures.
The CPT theorem implies that a pin+ structure leads to a time-reversal symmetry acting
classically as T2 = (−1)F. This cannot happen for a theory with one supercharge; since
the supercharge are fermionic they have to come in representations of T which are at least
two-dimensional.

We can therefore define 8 different unorientable N = 1 JT gravity by including the
eta-invariant TQFT. These theories saturate the remainder of the ten Altland-Zirnbauer
random matrix ensembles.

5.2 N = 2 JT gravity

The previous derivation was extended to N = 2 JT supergravity in [66]. I will only have
time to cover some main aspects of the calculation.

– 43 –



5.2.1 Warmup: JT gravity coupled to a gauge field

To be added

5.2.2 Derivation of the matrix ensemble

In this case we will begin by analyzing the random matrix ensemble. This has not been
done before [66] for systems with extended supersymmetry.

N = 2 quantum mechanics implies the existence of two charges Q and Q† that satisfy
the algebra

Q2 = Q†2 = 0, {Q,Q†} = H. (5.26)

We also assume the existence of an R-symetry U(1) generated by J satisfying

[J,Q] = Q, [J,H] = 0. (5.27)

The operator distinguishing bosons and fermions is now given by

(−1)F = e±iπJ . (5.28)

The Hilbert space decomposes according to the spectrum of R-charges H = ⊕kHk. The
supercharge decomposes accordingly

Q =
∑
k

Qk, Qk : Hk → Hk+1, (5.29)

and the algebra has two types of irreducible multiplets. BPS multiplets are invariant under
all supercharges Qψk = Q†ψk = 0 and come as one state of charge k. Non-BPS multiplets
come in pairs of charge (k, k + 1) and Qψk ∼ ψk+1, Q

†ψk+1 ∼ ψk. The Hilbert space
therefore further decomposes into

Hk = H0
k︸︷︷︸

BPS states of charge k

⊕ H+
k︸︷︷︸

From multiplet (k, k + 1)

⊕ H−
k︸︷︷︸

From multiplet (k, k − 1)

(5.30)

We would like to construct a random matrix model where we integrate over all super-
charges satisfying the right algebra, and such that the ensemble is invariant under unitaries
acting on each subsector of charge k. This leads to two immediate issues:

• A naive prescription is to integrate over all Qk as if they were complex matrices. This
is wrong since the algebra Q2 = 0 imply that

Qk ·Qk−1 = 0. (5.31)

This has to be supplemented as a constraint.

• Consider the symmetry group U(Lk) acting on Hk. Both matrices Qk−1 and Qk are
affected, via left- or right-multiplication, by this unitary transformation. Therefore in
the reduction to its singular value integral, the measure one derives (analogous to the
Vandermonde term) will not obviously factorize between different supermultiplets.
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To say it in another words, we will to compute the measure factor∫ ∏
k

dQk
∏
s

δ(Qs+1 ·Qs) (5.32)

to a suitable integral over “eigenvalues” and determine the measure. This calculation was
done in [66] with the result

• The (k, k + 1) multiplets are statistically independent of each other.

• The measure over each supermultiplet reduces to that of the Altland-Zirnbauer en-
semble with∏

i

∫
dλi |λi|α

∏
i<j

|λ2
i − λ2

j |β ⇒ (α,β) = (1 + 2L0
k + 2L0

k+1, 2). (5.33)

In models where L0
k ∼ L the BPS contribution to the measure can be absorved in the

matrix potential leading to effectively a (1, 2) model (matrix models with logarithmic
potentials are also called Penner models). In such cases the information of the BPS
states is in the spectral curve, not in the loop equations.

• The wavefunction of supersymmetric states of R-charge k inside Hk are random.

The result is familiar but yet surprising. It relies on a non-trivial cancellation between the
effects enumerated above that want to correlate the singular values of different Qk’s.

5.2.3 Supergravity path integral

In the BF formalism we can define N = 2 JT gravity as a gauge theory with the su-
pergroup SU(1, 1|1) = OSp(2|2)/Z2. This is the group of linear transformations acting
on a space of dimension 2|1 preserving an inner product. The maximal bosonic subgroup
includes SL(2,R) and U(1). This implies that the theory includes bosonic JT gravity, a
two-dimensional Maxwell field, together with a complex gravitini and dilatini. The path
integral localizes to flat SU(1, 1|1) connections which in the appropriate component reduce
to N = 2 hyperbolic surfaces.

The holonomy around a geodesic is conjugated to14

U = eiϕ

−eb/2 0 0
0 −e−b/2 0
0 0 eiϕ

 . (5.34)

b represents the geodesic length while ϕ labels the U(1) holonomy around it. We have fixed
conventions where ϕ = 0 corresponds to antiperiodic fermions. Periodic fermions can be
achieved by setting ϕ = π, what would be referred to as spectral flow in the context of 2d
CFT.

14One can also work with a q̂-fold cover of SU(1, 1|1) where ϕ ∼ ϕ + 2π/q̂ and q̂ is an odd integer. This
generalization is important, particularly in the context of SYK [65], but will not make any drastic change
in the discussion here.
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Something new that happens in this case is that we can add topological theories that
affect the disk. This is due to the fact that even at the disk level there is a sum over
topologically inequivalent configurations of the U(1) gauge field labeled by their first Chern
class. One is free to add a term analog of the theta angle in four dimensions. We call this
δ.

The disk partition function is given by

Zdisk(β, α) = eS0
∑
n∈Z

exp (2πinδ)
cos(α2 + πn)

2π3(1 − 4(α/2π + n)2) e
π2
β

(1−4(α/2π+n)2
. (5.35)

The prefactor arises from the one-loop determinant. Since the fermions are now charged
under the U(1) symmetry, the one-loop determinant depends non-trivially on the U(1)
chemical potential.

The spectrum derived from this partition function takes the form

Z(β, α) =
∑

k∈Z+δ
eiαk eS0 cos(πk)

4π2︸ ︷︷ ︸
BPS states of charge k

+
∑

q∈Z+δ− 1
2

(eiα(q− 1
2 ) + eiα(q+ 1

2 ))
∫ ∞

E0(q)
dE e−βE eS0 sinh(2π

√
E − E0(q))

8π3E︸ ︷︷ ︸
Spectrum of non-BPS multiplets

. (5.36)

where E0(q) = q2/4. This is the threshold energy of a non-BPS multiplet with average
R-charge q, or equivalently with R-charges k = q± 1/2. We see that the effect of the theta
angle δ is simply to add a background charge. This represents a mixed anomaly when
δ = 1/2 between charge-conjugation and U(1) symmetry.

We see almost all multiplets have a non-vanishing gap E0 ̸= 0 and a square-root
edge. This is consistent with the (1, 2) ensemble as long as E0 ̸= 0. When q = 0 is in
the spectrum, its gap vanishes and now we get a 1/

√
E, again consistent with an (1, 2)

ensemble.

The cylinder path integral can be obtained from gluing two double-trumpets. The twist
parameter comes now with a U(1) partner; the SU(1, 1|1) holonomies describing parallel
transport from one boundary to another, represented by matrices that commute with U

are proportional to diag(eϱ/2, e−ϱ/2,−eiφ). The trumpet partition function is

Ztrumpet =
∑
n∈Z

exp (2πinδ)
cos(α2 + πn)

πβ
e

− b2
4β

− 4π2
β

( α−ϕ
2π

+n)2
. (5.37)

The final answer for the double-trumpet is

Z = (2π)
∫ 2π

0
dϕ
∫ ∞

0
bdbZtrumpet(β1, α1; b, ϕ)Ztrumpet(β2, α2; b,−ϕ)

=
∑
q

(eiα1(q− 1
2 ) + eiα1(q+ 1

2 ))(eiα2(q− 1
2 ) + eiα2(q+ 1

2 ))
√
β1β2

2π(β1 + β2)e
−β1E0(q)−β2E0(q).(5.38)
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This is consistent with the ensemble derived in [66] which predicts the supermultiplets
should be statistically independent; notice there is a single sum over multiplets q instead of
two. This is achieved concretely by the integral over intermediate U(1) holonomies along
the internal circle.

More complicated surfaces can again be built out of three-holed spheres glued to trum-
pets. The obvious next step is to evaluate the torsion. At this point one can apply the
same approach we did so far to the group SU(1, 1|1). This is easier said than done, and
multiple subtleties arise that need to be taken care of. These can be read in [66]. Instead
we will just point out some salient features of some results.

For example, in N = 1 supergravity we argued that all genus zero volumes vanish due
to the presence of fermionic moduli. Is this the case in N = 2 supergravity? The answer
is no. The path integral on the three-holed sphere for example is given by

V0,3 = − 1
2π

1
4δ

′′(ϕ1 + ϕ2 + ϕ3). (5.39)

The first feature we see is the presence of the delta function imposing ϕ1 + ϕ2 + ϕ3 = 0.
This can be understood directly from considering the U(1) gauge field; there are no flat
connections unless this constraint is satisfied. The constraint is still satisfied in supergravity
but it gets fermionic corrections where now

ϕ1 + ϕ2 + ϕ3 = (fermions). (5.40)

The precise form of the fermion terms can be derived from the condition UVW = 1 on the
SU(1, 1|1) holonomies. Now when we integrate over the fermionic moduli, non-vanishing
terms can be picked up from the fermionic terms of the constraint.

To give an example consider the integral∫
d2θ δ(x+ θ1θ2) =

∫
d2θ

(
δ(x) + δ′(x)θ1θ2

)
,

= δ′(x) (5.41)

This type of effect leads to the derivatives acting on the delta function.

It is convenient to present these volumes in terms of their Fourier transforms

Vg,n(q) = (2π)2−2g
∫ dnϕ

(2π)n e
iq
∑

j
ϕjVg,n. (5.42)

One can show that these volumes are polynomials in both b and q

Vg,n(q) =
2g−2+n∑
m=1

(q2/4)mvg,n,m(b1, . . . , bn). (5.43)

There are a few properties one can easily show by deriving a supersymmetric generaliation
of Mirzakhani recursion.

• The volumes are polynomials in q2 of highest degree equal to 2g − 2 + n.
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• The term with the highest power of q is equal to the bosonic volumes computed by
Mirzakhani.

• As we decrease the power of q2 by s units, the coefficient vg,n,m=2g−2+n−s is a poly-
nomial in b2 of degree 3g − 3 + n − s. In particular vg,n,0 is a polynomial of degree
g − 1. This is also true for g = 0 since v0,n,0 = 0 vanishes.

• Some examples one can easily evaluate from the recursion:

V0,3 = q2

4 1, V1,1 = q2

4
b2 + 4π2

48 +
(

− 1
8
)
,

V0,4 = q4

16
4π2 + b2

1 + b2
2 + b2

3 + b2
4

2 + q2

4 (−3). (5.44)

We can repeat the derivation of Mirzakhani taking into account the fermionic and
bosonic extra moduli involved in the three-holed sphere that is used to glue. This produces
yet a new set of kernels and applying a Laplace transform similar to Eynard-Orantin, one
can show that the gravitational path integral of N = 2 JT supergravity is dual to the ran-
dom matrix ensemble described earlier. The supermultiplets are statistically independent
and the spectral curve is

y(x) = sin(2π
√

−x+ q2/4)
8π2x

(5.45)

5.2.4 “Unorientable” N = 2 supergravity

There are two types of unorientable models one can consider.

Type A When including time reversal T we assume that it commutes with the U(1)
generators. Notice that this is the convention used in particle theory although is a bit
unnatural (would be more reasonable to call this CT since naturally time reversal also flips
the charges). In the dual QM this acts within each supermultiplet and leads to the (0, 1)
and (3, 4) ensembles.

Type B The theory has a anti-unitary symmetry CT that anti-commutes with the R-
symmetry generator. This relates Qk ↔ Q−k−1 and otherwise puts no further constraint
except for Q−1/2 when δ = 1/2. This case leads to (1, 1) or (1, 4) ensembles.

To study the gravity problem requires requires utilizing the CPT theorem to infer how
R acts in each case (giving the two choices above) and then consider the possible topological
theories that can be added (leading to the two subcases). Some evidence was given in [66]
but no general proof of the dualities.

Finally one could consider a case with separate C and T invariant and enumerate the
possibilities.

Open question: extend the dualities to N = 4 supergravity. This is highly non-trivial
for multiple reasons.
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